

Multidisciplinary Approaches To Hospital-Acquired Infections: Integrating Health Security, Nursing, Physical Therapy, Radiology, Laboratory Diagnostics, Epidemiology, And Pharmacist-Led Antimicrobial Stewardship

Mohammed Dakhilallah Abdulla Alharthi¹, Adel Ahmed Harisy², Adel Mohammed Alabdullatif³, Mohammed Dakhilallah Abdulla Alharthi⁴, Mohammad Abdu Ali Mubarki⁵, Ahmed Sannat Alotaibi⁶, Abdulrahman Fahad Aljabr⁷, Ibrahim Hamad Ibrahim Alammar⁸, Hassan Mosa Hassan Mjamami⁹, Majed Essa Essa Ageel¹⁰, Sami Saleh Ali Almutairi¹¹, Bodour Samer Almotiri¹², Badriah Sameer Almutairy¹³, Mohanad Abdulaziz Alomar¹⁴

¹Durma Hospital

²Al-Ardah Hospital, Jazan

³Shqra General Hospital

⁴Durma Hospital

⁵Ahad Almasariha General Hospital

⁶Ajif General Hospital

⁷Shqra General Hospital

⁸Shqra General Hospital

⁹Jazan Health Cluster

¹⁰King Fahd Central Hospital

¹¹Prince Nasser Bin Saad Al-Sudairi Al-Ghat Hospital

¹²Akhaldiyah Health Care Center

¹³Ministry Of Health

¹⁴Marat General Hospital

Abstract:

Background: Healthcare-associated infections (HAIs) represent a major global threat, contributing to significant morbidity, mortality, prolonged hospitalization, and economic burden. Their development is influenced by invasive procedures, indwelling devices, antimicrobial resistance, and complex interactions between pathogens, host susceptibility, and the healthcare environment.

Aim: To synthesize multidisciplinary perspectives on the etiology, epidemiology, pathophysiology, evaluation, and management of HAIs, emphasizing the essential roles of clinical, diagnostic, and preventive strategies in reducing infection rates.

Methods: This review integrates evidence across healthcare disciplines—nursing, epidemiology, radiology, laboratory diagnostics, pharmacy, and physical therapy—drawing from contemporary data on pathogen patterns, risk factors, transmission routes, diagnostic approaches, and best-practice prevention protocols.

Results: Pneumonia, surgical site infections, bloodstream infections, gastrointestinal infections, and urinary tract infections constitute the most common HAIs, with multidrug-resistant organisms significantly complicating treatment. Device-associated infections such as CLABSI, CAUTI, and VAP arise primarily from biofilm formation and breaches in aseptic technique. Effective diagnosis relies on targeted cultures, imaging, and pathogen-specific testing. Management requires prompt antimicrobial therapy, source control, device reassessment, and stewardship-guided de-escalation. Prevention strategies—including hand hygiene, environmental cleaning, isolation precautions, and multidisciplinary collaboration—can prevent over half of major HAIs.

Conclusion: HAIs remain a preventable yet persistent healthcare challenge. Multidisciplinary coordination, adherence to evidence-based infection control, and robust antimicrobial stewardship are essential to reducing incidence, improving outcomes, and decreasing healthcare costs.

Keywords: Healthcare-associated infections, CLABSI, CAUTI, VAP, antimicrobial stewardship, epidemiology, prevention, multidrug resistance.

Introduction:

Nosocomial infections, also referred to as healthcare-associated infections (HAIs), are infections acquired during the delivery of healthcare and are absent at the time of admission. These infections can develop across multiple healthcare settings, including acute care hospitals, long-term care facilities, outpatient clinics, and even post-discharge. HAIs also encompass occupational infections affecting healthcare personnel. The transmission of pathogens to a susceptible host is the central mechanism in their development. Risk factors contributing to HAIs include invasive procedures, surgical interventions, the use of indwelling medical devices such as catheters or central lines, and implantation of prosthetic devices. The etiology of these infections varies according to the type of pathogen involved, which may include bacterial, viral, or fungal organisms, as well as the source and site of infection. Healthcare-associated infections represent the most frequent adverse events in modern healthcare, posing a significant threat to patient safety. They increase morbidity, prolong hospital stays, elevate mortality rates, and generate substantial financial burdens for patients, families, and healthcare systems. The emergence and spread of multidrug-resistant organisms have further complicated prevention and treatment strategies, making HAIs a critical global concern. Epidemiological data indicate that approximately 3.2% of hospitalized patients in the United States and 6.5% in the European Union/European Economic Area are affected by HAIs, though true global prevalence remains difficult to determine due to variability in surveillance and reporting practices. Ongoing efforts by infection prevention and control programs aim to improve surveillance systems, identify high-risk populations, and implement evidence-based strategies to reduce the incidence and impact of HAIs. Effective multidisciplinary approaches, involving nursing, laboratory diagnostics, epidemiology, pharmacy, radiology, and physical therapy, are essential to address the complex challenges posed by healthcare-associated infections [1][2][3][4].

Etiology

The etiology of healthcare-associated infections (HAIs) is complex and multifactorial, involving the interplay between pathogens, host susceptibility, and the healthcare environment. Patients acquire these infections through endogenous sources, such as their own microbial flora, or exogenous sources, including contaminated medical equipment, healthcare personnel, and invasive procedures. The risk of HAIs increases in settings where patients are exposed to indwelling devices, surgical interventions, or prolonged hospital stays. Host factors such as immunosuppression, chronic illness, and advanced age further predispose individuals to these infections. The United States Centers for Disease Control and Prevention (CDC) categorizes HAIs broadly into several major types, including central line-associated bloodstream infections (CLABSI), catheter-associated urinary tract infections (CAUTI), surgical site infections (SSI), and ventilator-associated pneumonia (VAP). Additional HAIs encompass non-ventilator-associated hospital-acquired pneumonia, gastrointestinal infections including Clostridioides difficile infection, primary bloodstream infections not associated with central lines, and urinary tract infections unrelated to catheterization. Infections may also be classified by the affected organ system, encompassing the respiratory tract, cardiovascular system, skin and soft tissues, bones and joints, central nervous system, and reproductive tract [1][2][3]. Epidemiological data indicate that pneumonia has emerged as the most common HAI in acute care hospitals. A 2015 point-prevalence survey conducted in US hospitals found that pneumonia, followed by gastrointestinal infections, SSIs, bloodstream infections, and urinary tract infections, accounted for the majority of HAIs. This represented a shift from 2011, when pneumonia and SSIs each represented 21.8% of HAIs, gastrointestinal infections 17.1%, urinary tract infections 12.9%, and bloodstream infections 9.9% [1][5]. Non-ventilator-associated hospital-acquired pneumonia was particularly prevalent in acute care settings, consistent with European findings [2][6].

Fig. 1: Nosocomial Infections.

The causative organisms of HAIs vary but are primarily bacterial, followed by fungi and viruses. Bacterial pathogens may originate from endogenous or exogenous sources, with opportunistic infections arising when host defenses are compromised. Gram-positive bacteria frequently implicated include coagulase-negative Staphylococci, *Staphylococcus aureus*, *Streptococcus* species, and *Enterococcus* species such as *E. faecalis* and *E. faecium*. *Clostridioides difficile* remains a notable pathogen, accounting for 15% of infections with identified organisms [1][5]. Gram-negative bacteria include Enterobacteriaceae such as *Klebsiella pneumoniae*, *Klebsiella oxytoca*, *Escherichia coli*, *Proteus mirabilis*, and Enterobacter species, as well as *Pseudomonas aeruginosa*, *Burkholderia cepacia*, and *Acinetobacter baumannii*. *A. baumannii* is particularly associated with high mortality in intensive care units due to multidrug resistance [7][8][9]. Multidrug-resistant organisms significantly complicate HAIs, contributing to increased morbidity and mortality. Approximately 20% of all reported HAI pathogens exhibit multidrug-resistant patterns [10]. Resistant bacteria of concern include methicillin-resistant *Staphylococcus aureus* (MRSA), vancomycin-intermediate and vancomycin-resistant *S. aureus*, vancomycin-resistant *Enterococcus*, extended-spectrum beta-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, multidrug-resistant *Pseudomonas aeruginosa*, and *Acinetobacter* species. These pathogens pose a challenge for clinicians and necessitate stringent infection control measures and antimicrobial stewardship [9]. Fungal pathogens are generally opportunistic and affect immunocompromised patients or those with indwelling devices. *Candida* species, including *C. albicans*, *C. parapsilosis*, and *C. glabrata*, are the most common, while *Candida auris* has emerged as a multidrug-resistant species of global concern due to high morbidity and frequent treatment failures [11][12]. *Aspergillus fumigatus* may also cause HAIs, particularly through airborne transmission during hospital construction or via colonized patients [13][14].

Viral HAIs account for a small proportion, approximately 1% to 5%, of total infections [15]. Bloodborne viruses such as hepatitis B, hepatitis C, and HIV are primarily transmitted through unsafe needle practices, particularly in resource-limited settings, with an estimated 5.4% of global HIV infections being healthcare-associated [16]. Other viruses implicated include rhinovirus, cytomegalovirus, herpes simplex virus, rotavirus, and influenza. These infections, while less common than bacterial or fungal HAIs, represent important considerations in occupational safety and infection control programs. The etiology of HAIs reflects a dynamic interplay between pathogen characteristics, patient vulnerability, and the hospital environment. Understanding these mechanisms is essential for designing targeted prevention strategies, implementing effective antimicrobial stewardship programs, and ensuring multidisciplinary coordination across nursing, laboratory, pharmacy, epidemiology, radiology, and physical therapy services to minimize the burden of healthcare-associated infections.

Epidemiology

Healthcare-associated infections (HAIs) represent a substantial global burden, contributing to increased morbidity, mortality, and healthcare expenditures. Although precise global estimates are limited by inconsistent surveillance and reporting, data from high-income regions such as the United States and Europe provide insights into the epidemiology of these infections. HAIs occur across diverse healthcare settings, including acute care hospitals, intensive care units (ICUs), long-term care facilities, and ambulatory settings, with prevalence and incidence varying by care level, patient population, and type of infection [1][2]. In European healthcare facilities, the prevalence of HAIs differs considerably by care setting. Studies report 4.4% prevalence in primary care hospitals, 7.1% in tertiary care centers, 19.2% in ICUs, and 3.7% in long-term care facilities. These variations reflect differences in patient acuity, exposure to invasive procedures, and adherence to infection control protocols. An estimated 8.9 million HAI episodes occur annually across acute care and long-term healthcare facilities within the European Union. The European Prevalence of Infection in Intensive Care (EPIC) study conducted in 1995 documented an ICU-acquired infection prevalence of 20.6%, highlighting the particular vulnerability of critically ill patients [17].

In the United States, HAIs affect approximately 3.2% of hospitalized patients, according to 2015 data, representing a modest decline from 4.0% reported in 2011 [1]. Distribution across care units shows that 36.4% of HAIs occur in critical care units, 57.5% in general wards or nurseries, and 6.1% in step-down, specialty, or mixed-acuity units. Earlier investigations indicate that HAI rates are highest among adults and pediatric patients outside the ICU, followed by ICU patients, high-risk neonatal nurseries, and well-baby nurseries [18]. In 2015, an estimated 687,200 HAIs were reported in US hospitals, affecting 633,300 patients, a significant reduction from the 1.7 million infections estimated in 2002, reflecting the impact of infection prevention and control programs [1][18]. The burden of HAIs is significantly higher in developing countries due to limited infection control resources, suboptimal healthcare infrastructure, and higher prevalence of high-risk populations. A pooled analysis reported a prevalence of 15.5%, with ventilator-associated pneumonia (VAP) and neonatal ICU infections accounting for the majority of cases. Regional analyses in Southeast Asia indicate an overall HAI prevalence of 9.1%, underscoring the need for strengthened surveillance and targeted prevention strategies [3][19]. Understanding HAI epidemiology across various healthcare settings is essential for designing effective infection prevention policies, allocating resources, and implementing multidisciplinary strategies to reduce infection rates, protect patient safety, and mitigate healthcare costs. Surveillance, risk stratification, and targeted interventions remain central to controlling the burden of HAIs globally.

Pathophysiology

Healthcare-associated infections (HAIs) arise from complex interactions between microbial exposure, host susceptibility, and invasive medical interventions. Normally sterile body sites, such as the bloodstream, lower respiratory tract, and urinary tract, become vulnerable when natural defenses are bypassed by devices like central venous catheters, urinary catheters, endotracheal tubes, or prosthetic implants. Pathogens exploit these breaches to colonize, form biofilms, and induce infection, which may remain localized or progress to systemic involvement depending on host immunity and virulence factors. The severity and clinical course of HAIs are influenced by the interplay of pathogen type, inoculum size, and host immunocompetence, including factors such as age, comorbidities, nutritional status, and immunosuppressive therapy.

Routes of Transmission

HAIs are transmitted via multiple mechanisms, primarily contact, droplet, and airborne routes. Contact transmission, both direct and indirect, is the most frequent, involving the transfer of pathogens like methicillin-resistant *Staphylococcus aureus* (MRSA), vancomycin-resistant *Enterococcus* (VRE), extended-spectrum β -lactamase-producing gram-negative bacteria, *Clostridioides difficile*, and rotavirus. Droplet transmission occurs through larger respiratory particles (>5 microns) that travel short distances, spreading infections such as influenza, pertussis, and meningococcal disease. Airborne transmission involves smaller particles (<5 microns) capable of long-distance travel, allowing pathogens like *Mycobacterium tuberculosis*, varicella-zoster virus, measles virus, and SARS-CoV-2 to infect susceptible hosts over extended areas [20]. Understanding these transmission pathways is essential for implementing targeted infection prevention measures, including hand hygiene, barrier precautions, isolation protocols, and environmental cleaning.

Central Line-Associated Bloodstream Infections (CLABSI)

CLABSI occur when pathogens enter the bloodstream through central venous catheters (CVCs), representing one of the most preventable HAIs. In the US, approximately 55% of ICU patients and 24% of non-ICU patients have a CVC at some point during hospitalization [21]. Infection often results from skin flora migrating along the catheter's external surface, contamination during insertion or manipulation, or hematogenous seeding from other infection sites. Biofilm formation by bacteria and fungi facilitates adhesion to catheter surfaces, enhances resistance to host immune responses, and complicates eradication with antimicrobial therapy [22]. Common pathogens include *Staphylococcus aureus* (23%), *Candida* species (13%), coagulase-negative *Staphylococcus* (12%), *Enterococcus* species (12%), *Streptococcus* species (12%), *Escherichia coli* (8%), and *Bacteroides* species (6%) [1][23]. Multidrug resistance is frequent and complicates management. Risk factors include host characteristics such as immunosuppression, malnutrition, parenteral nutrition, extremes of age, and bone marrow transplantation. Catheter-related risks include prolonged dwell time, multilumen devices, femoral insertion, urgent placement, and breaches in aseptic technique.

Catheter-Associated Urinary Tract Infections (CAUTI)

CAUTIs develop in patients with indwelling urinary catheters. Approximately 15% to 25% of hospitalized patients receive a urinary catheter during their stay. Infections are classified as extraluminal, resulting from bacterial migration along the catheter surface, or intraluminal, arising from urinary stasis or contamination of the catheter lumen. Biofilm formation promotes colonization and persistence. Common pathogens include *E. coli*, *Klebsiella* species, *Enterococcus* species, *Pseudomonas aeruginosa*, and *Candida* species [1][24]. Duration of catheterization is the principal modifiable risk factor. Patient-specific risks include female sex, advanced age, diabetes, paraplegia, cerebrovascular disease, recent urinary tract infection, and prior antibiotic exposure. CAUTI can lead to pyelonephritis, bacteremia, and sepsis if not promptly recognized and managed.

Surgical Site Infection (SSI)

SSIs occur in 2% to 5% of surgical patients and are classified by depth: superficial, deep, or organ/space infections. Endogenous flora from the skin, gastrointestinal tract, or genitourinary tract commonly contaminate the surgical field. Procedure-related risks include prolonged operative time, wound classification (dirty or contaminated), hypothermia, hypovolemia, hypoxemia, emergency surgery, multiple procedures, blood transfusion, and use of prosthetic implants [27][28]. Patient-related risk factors include immunosuppression, obesity, tobacco use, hyperglycemia, malnutrition, joint disease, and advanced age. Pathogens typically involve *E. coli*, *S. aureus*, coagulase-negative *Staphylococcus*, *Klebsiella*, *Enterobacter*, *Enterococcus*, and *Streptococcus* species [1][27]. Exogenous contamination from surgical instruments or staff is less common but can lead to clustered outbreaks.

Pneumonia

Hospital-acquired pneumonia (HAP) occurs 48 hours after admission, whereas ventilator-associated pneumonia (VAP) develops after more than 48 hours of mechanical ventilation. VAP affects 5% to 15% of ventilated patients [30]. Pathogens reach the lower respiratory tract via aspiration, inhalation of contaminated aerosols, or hematogenous spread. Common organisms include *S. aureus*, *P. aeruginosa*, *Candida* species, *Klebsiella* species, *Streptococcus* species, and *Enterobacter* species. Host risk factors include chronic lung disease, immunosuppression, neutropenia, advanced age, dysphagia, and recent thoracic or abdominal surgery [31]. VAP-specific risk factors involve sedation, supine positioning, inadequate oral care, physical deconditioning, and reintubation. Multidrug-resistant pathogens are more likely in patients with prior intravenous antibiotic exposure, prolonged hospitalization, septic shock, acute respiratory distress syndrome, or acute renal replacement therapy [33].

***Clostridioides difficile* Infection**

C. difficile is the most commonly identified pathogen in HAIs, causing antibiotic-associated diarrhea and colitis. Transmission occurs via the fecal-oral route or through aerosolized spores, leading to colonization and toxin-mediated mucosal injury [34]. Key risk factors include prior antibiotic exposure and environmental contamination. Additional risks involve advanced age, comorbidities,

hospitalization, use of gastric acid-suppressing medications, and immunosuppression [35]. *C. difficile* infections can progress to pseudomembranous colitis, toxic megacolon, sepsis, and death if not promptly recognized and treated.

Biofilm Formation and Antimicrobial Resistance

A unifying feature across HAIs, particularly CLABSI, CAUTI, and device-associated pneumonia, is biofilm formation. Biofilms protect pathogens from host immune responses and reduce susceptibility to antibiotics, enabling persistent colonization of medical devices and increasing the risk of recurrent infections. Multidrug-resistant organisms, including MRSA, VRE, carbapenem-resistant Enterobacteriaceae, and multidrug-resistant *Pseudomonas* and *Acinetobacter* species, complicate management and are associated with higher morbidity, mortality, and healthcare costs. Biofilm formation often necessitates device removal in addition to antimicrobial therapy to achieve source control. The host immune system plays a pivotal role in the progression and resolution of HAIs. Innate defenses, including neutrophils, macrophages, and the complement system, are the first line of defense. Adaptive immunity, mediated by B and T lymphocytes, contributes to pathogen clearance but may be impaired in immunocompromised or critically ill patients. Dysregulated inflammatory responses can contribute to tissue damage and systemic complications such as sepsis and multi-organ failure. The pathophysiology of HAIs is multifactorial, encompassing microbial virulence, host susceptibility, and environmental exposure. Device-associated infections, surgical procedures, prolonged hospitalization, and antibiotic exposure create conditions for pathogen colonization, biofilm formation, and immune evasion. Common HAI types—including CLABSI, CAUTI, SSIs, HAP, VAP, and *C. difficile* infection—illustrate the interplay between pathogen, host, and healthcare environment. Multidrug resistance and biofilm formation amplify challenges in prevention and management. Understanding the pathophysiologic mechanisms underlying HAIs is essential for implementing evidence-based infection control strategies, guiding antimicrobial stewardship, and reducing morbidity, mortality, and healthcare costs [35].

History and Physical

The evaluation of patients with healthcare-associated infections (HAIs) begins with a detailed history and physical examination, which are crucial for identifying the type, severity, and potential source of infection. Clinical manifestations of HAIs vary widely depending on the pathogen involved, the infection site, the patient's comorbidities, and the invasiveness of recent medical procedures. Presentations may range from localized symptoms, such as erythema, warmth, or tenderness, to systemic features including fever, hypotension, and signs of sepsis. Central line-associated bloodstream infections (CLABSI) often present with fever and rigors in patients with a central venous catheter in situ or within 48 hours after removal. Localized findings such as erythema, purulent drainage, or catheter dysfunction may occur but are not required for diagnosis and should not reduce clinical suspicion. CLABSI can complicate into endocarditis, suppurative thrombophlebitis, septic arthritis, osteomyelitis, or deep abscess formation, highlighting the need for early recognition and intervention. Catheter-associated urinary tract infections (CAUTI) manifest similarly to non-catheter-associated urinary infections but are associated with indwelling urethral or suprapubic catheters or recent catheterization. Common clinical signs include fever, suprapubic or costovertebral angle tenderness, acute hematuria, dysuria, urgency, and catheter obstruction. Early identification is essential to prevent progression to pyelonephritis or bacteremia. Surgical site infections (SSI) typically develop within 30 days postoperatively, or within 90 days if prosthetic material is involved. Superficial infections present with erythema, warmth, localized pain, purulent drainage, or wound dehiscence. Deep or organ/space SSIs may have subtle local signs but often present with systemic features, including fever, rigors, leukocytosis, and generalized malaise [34][35].

Hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) are characterized by new-onset fever, cough, purulent sputum, and worsening oxygenation, typically occurring more than 48 hours after admission or intubation. Sedated or mechanically ventilated patients may demonstrate increased oxygen requirements or purulent secretions. Physical examination may reveal coarse breath sounds, rales, or diminished breath sounds in the presence of parapneumonic effusions. Healthcare-associated *Clostridioides difficile* infection should be suspected in patients with three or more unformed stools within 24 hours after the third day of hospitalization, especially following antibiotic exposure.

Symptoms include diarrhea, abdominal pain, cramping, distension, fever, nausea, anorexia, and dehydration. Immunocompromised or older adults may present atypically, with altered mental status, lethargy, fatigue, or subtle vital sign changes such as tachycardia, hypotension, or respiratory compromise. A high index of suspicion is necessary to identify cases early and reduce morbidity. Thorough documentation of recent procedures, antibiotic use, comorbid conditions, and device exposure is essential in guiding diagnostic testing, empiric antimicrobial therapy, and the implementation of infection control measures. Comprehensive physical examination and recognition of subtle or atypical signs can significantly improve outcomes in patients with HAIs [35].

Evaluation

Accurate evaluation of healthcare-associated infections (HAIs) relies on a combination of clinical assessment, physical examination, and targeted laboratory and diagnostic testing. Routine blood work, including complete blood counts, metabolic panels, inflammatory markers such as C-reactive protein and procalcitonin, and blood gases, provides a foundation for assessing the severity of systemic infection and monitoring response to therapy. Specific diagnostic strategies vary depending on the type of HAI and the implicated pathogen. For central line-associated bloodstream infections (CLABSI), blood cultures are the cornerstone of diagnosis. Cultures should be obtained from at least two sites: the central venous catheter itself and a peripheral vein. If purulent drainage is observed at the catheter insertion site, this material should also be cultured to identify the causative pathogen. Timely collection prior to initiating antibiotic therapy is critical to avoid false-negative results. Additional assessments may include imaging studies to detect secondary complications such as endocarditis or deep-seated abscesses. Catheter-associated urinary tract infections (CAUTI) require urine culture for confirmation. Whenever feasible, samples should be collected from midstream urine following catheter removal to reduce contamination from biofilm along the catheter. Pyuria is frequently observed in catheterized patients with bacteriuria. Asymptomatic bacteriuria, defined by growth of $\geq 100,000$ colony-forming units per milliliter (CFU/mL) in the absence of infection symptoms, generally does not require treatment. A definitive diagnosis of CAUTI is made when clinical symptoms such as dysuria, urgency, hematuria, or suprapubic tenderness are present along with urine cultures revealing $\geq 1,000$ CFU/mL of a uropathogen [35].

Surgical site infections (SSI) are evaluated based on the depth and presentation of infection. Superficial swabs may be unreliable due to colonization, whereas tissue or drainage samples from deep or organ-space infections provide more accurate results for culture and antimicrobial susceptibility testing. Imaging modalities, such as ultrasonography or computed tomography, can detect abscesses, fluid collections, or prosthetic involvement and guide appropriate interventions. Hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) are assessed through imaging and microbiologic analysis. Chest radiography serves as the first-line diagnostic tool, identifying new or progressive infiltrates. Laboratory findings may include leukocytosis or leukopenia. Respiratory samples can be obtained noninvasively via endotracheal aspiration or expectorated sputum, or invasively via bronchoalveolar lavage or bronchoscopic brushing. Isolated pathogens should undergo staining, culture, and antimicrobial susceptibility testing. Specialized media may be required for fastidious organisms such as *Mycobacterium tuberculosis* or fungi. Evaluation of *Clostridioides difficile* infection (CDI) involves stool testing for toxins A and B or toxin genes. Only liquid stool from symptomatic patients should be tested to avoid false positives. Rectal swabs may be used in patients with ileus. Initial testing often begins with enzyme immunoassays for toxins and glutamate dehydrogenase antigen, with indeterminate results confirmed via nucleic acid amplification testing (NAAT). Colonoscopy is reserved for cases where pseudomembranous colitis is suspected, and imaging may be necessary in severe presentations to assess for complications such as toxic megacolon or perforation. A structured, algorithmic approach to diagnostic evaluation ensures timely identification of pathogens, guides targeted antimicrobial therapy, and reduces the risk of misdiagnosis or inappropriate treatment. Early recognition of HAIs through laboratory and diagnostic testing directly improves patient outcomes and helps prevent secondary complications [34][35][36][37][38].

Treatment / Management

The management of healthcare-associated infections (HAIs) requires an integrated, multifaceted approach. Prompt identification of the causative pathogen, initiation of targeted antimicrobial therapy,

and removal or management of implicated medical devices are essential to controlling infection. Adherence to infection prevention and control protocols, coupled with antimicrobial stewardship programs, minimizes transmission and limits the emergence of resistant pathogens. The approach to treatment is determined by the type of HAI, the severity of illness, patient comorbidities, and local microbiologic patterns.

Central Line-Associated Bloodstream Infections (CLABSI)

Management begins with assessing the need for removal of the central venous catheter (CVC). Catheters colonized or infected with high-risk organisms, such as *Candida* species, *Staphylococcus aureus*, or *Pseudomonas aeruginosa*, should be removed promptly, with replacement at an alternate site after confirming blood culture clearance. Empiric antimicrobial therapy should be initiated based on local susceptibility patterns and refined according to culture results. Persistent bacteremia, sepsis, or evidence of metastatic infection necessitates further imaging and evaluation. Prevention is critical and relies on rigorous hand hygiene, skin antisepsis with chlorhexidine, strict aseptic techniques during insertion, and ensuring that experienced personnel perform CVC placement. Daily reassessment of catheter necessity, limiting the number of lumens, and minimizing the use of multiple catheters further reduces risk [39].

Catheter-Associated Urinary Tract Infections (CAUTI)

CAUTI management emphasizes both antimicrobial therapy and catheter handling. Removal or replacement of the indwelling catheter is recommended, particularly if in place for more than two weeks, to reduce biofilm-associated persistence. Antimicrobial therapy should be guided by urine culture and susceptibility testing, with empiric therapy informed by local antibiograms. Intermittent catheterization may be preferred when feasible, as it reduces infection rates. Use of antiseptic-coated catheters or antimicrobial irrigation remains controversial, given potential contributions to antimicrobial resistance. Prevention focuses on limiting catheter use, strict aseptic insertion, and daily evaluation of ongoing catheter necessity [40].

Surgical Site Infections (SSI)

SSI management requires prompt debridement of necrotic tissue and drainage of abscesses. Empiric antibiotics should cover likely pathogens based on the surgical site and procedure type, followed by narrowing according to culture results. Preoperative measures include optimizing modifiable risk factors, appropriate antibiotic prophylaxis, and, if indicated, decolonization protocols. Hair removal, if necessary, should be performed with clippers rather than razors to reduce microtrauma. Intraoperative measures include maintaining normothermia, euvoolemia, adequate oxygenation, and perioperative glucose control. Postoperative management focuses on wound care, monitoring of drains, and selective use of antibiotics for high-risk patients [41].

Hospital-Acquired and Ventilator-Associated Pneumonia (HAP/VAP)

Empiric antibiotic therapy for HAP or VAP should cover common pathogens, including *Pseudomonas aeruginosa*, MRSA, and other gram-negative organisms, until culture results guide de-escalation. Dual anti-pseudomonal therapy may be warranted for patients with risk factors for resistant pathogens. Empiric coverage for oral anaerobes is indicated in suspected aspiration pneumonia. Lack of clinical improvement within 72 hours should prompt reassessment for alternative diagnoses or complications. Prevention strategies focus on minimizing mechanical ventilation duration, light sedation protocols, early mobilization, oral hygiene, and daily readiness assessment for extubation [36].

Clostridioides difficile Infection (CDI)

Management of hospital-onset CDI involves discontinuing inciting antibiotics if feasible. First-line therapies include oral vancomycin and fidaxomicin, with metronidazole reserved for select cases. Recurrent CDI may be treated with fecal microbiota transplantation (FMT). Severe or refractory cases may require surgical consultation. Prevention relies on patient isolation, contact precautions, stringent hand hygiene, environmental cleaning, and robust antimicrobial stewardship programs. Overall, the successful management of HAIs integrates pathogen-directed therapy, careful device management, strict infection control, and prevention strategies. Individualized treatment planning, guided by culture

results, local resistance patterns, and patient-specific factors, is essential for improving outcomes and reducing complications associated with these infections [42][43][44].

Differential Diagnosis

The differential diagnosis of healthcare-associated infections (HAIs) is guided by the clinical presentation, type of infection, and patient-specific risk factors. Distinguishing HAIs from community-acquired infections is essential because differences in causative pathogens and antimicrobial resistance patterns can profoundly influence therapeutic decisions and infection control measures. A meticulous assessment of symptom onset relative to healthcare exposure—including recent hospitalization, prior use of broad-spectrum antibiotics, or the presence of central venous or urinary catheters—provides critical insight into the likely source of infection. Many HAIs present with signs and symptoms similar to community-acquired infections, making timing and clinical context indispensable in establishing a correct diagnosis. Central line-associated bloodstream infections (CLABSI) require careful evaluation in patients with bacteremia. In individuals without a central venous catheter (CVC), alternative sources such as wound infections, urinary tract infections, pneumonia, or endocarditis should be considered. When a CVC is in place, it is necessary to exclude other potential causes of bacteremia. Diagnosis of CLABSI is based on symptom onset occurring while the catheter remains in situ or within 48 hours of removal, combined with clinical findings. Catheter-associated urinary tract infections (CAUTI) must be distinguished from community-acquired urinary infections, which occur in the absence of catheter use. CAUTIs can present as lower urinary tract infections, including acute cystitis or urethritis, or as upper tract infections such as pyelonephritis, nephrolithiasis, or ureteritis. Accurate differentiation informs appropriate antimicrobial therapy and prevents unnecessary catheter manipulation or replacement. Surgical site infections (SSI) may present with fever or localized pain; however, multiple postoperative complications, such as atelectasis, pneumonia, urinary tract infection, medication reactions, wound dehiscence, cellulitis, or neoplasms, can mimic SSIs. True SSIs are generally observed within 30 days postoperatively or up to 90 days in cases involving prosthetic material. Confirmation requires clinical signs of infection supported by purulent drainage, positive cultures, or radiologic evidence, which varies depending on the infection site and depth. Similarly, hospital-acquired pneumonia (HAP) is distinguished from community-acquired pneumonia by symptom onset after 48 hours of admission, with differential diagnoses including chronic obstructive pulmonary disease exacerbations, asthma, pulmonary edema, pulmonary embolism, bronchiectasis, and upper respiratory infections. Ventilator-associated pneumonia (VAP) is differentiated from conditions such as acute respiratory distress syndrome, drug-induced pneumonitis, pulmonary hemorrhage, infiltrative malignancy, or pulmonary embolism. Healthcare-onset Clostridioides difficile infection (CDI) requires careful evaluation to distinguish infectious causes from noninfectious diarrhea. Noninfectious differentials include antibiotic-associated diarrhea unrelated to *C difficile*, inflammatory bowel disease, irritable bowel syndrome, malabsorptive disorders, or microscopic colitis. Infectious etiologies may include viral, fungal, or bacterial pathogens, including *Staphylococcus aureus*, *Salmonella*, *Bacteroides fragilis*, *Clostridium perfringens*, and *Klebsiella oxytoca* [45]. Severe CDI may mimic acute abdominal conditions such as ileus, colonic pseudo-obstruction, ischemia, or volvulus. Less common HAIs involve infections of soft tissue, the upper respiratory tract, the central nervous system, and the reproductive system, which often resemble their community-acquired equivalents and necessitate careful clinical assessment for accurate classification [45].

Prognosis

The prognosis of HAIs is influenced by the type of infection, severity of illness, and the pathogenic organism involved. Global estimates of morbidity and mortality remain uncertain due to limitations in surveillance, but multiple studies have elucidated the considerable impact of HAIs on patient outcomes. Mortality rates are highly variable depending on infection type, patient population, and the definitions employed. Thirty-day mortality associated with HAIs is reported at approximately 10%, while crude mortality rates range from 12% to 80% [46][47][48]. Critically ill populations experience disproportionately higher excess mortality, even when adjusted for baseline illness severity [17][49]. In intensive care units (ICUs), international studies indicate mortality rates of 25% among patients with HAI compared to 11% in uninfected patients, with overall mortality of 30% versus 15%, respectively [8]. The International Nosocomial Infection Control Consortium (2003–2008) reported excess mortality

in ICUs of 29.3% for VAP, 23.6% for CLABSI, and 18.5% for CAUTI [50]. In the United States, 2002 estimates attribute 98,987 deaths to HAIs, primarily due to pneumonia (35,967), bloodstream infections (30,665), UTIs (13,088), SSIs (8,205), and other sites (11,062) [18]. The impact of HAIs on hospital length of stay is substantial. In Germany, patients with HAIs experienced an average increase of 12 days across infection types, with CAUTI, SSI, and primary bloodstream infections contributing 3.3, 12.9, and 12.5 additional days, respectively [51]. Patients with multiple HAIs experienced extended hospitalizations of 25.6 days. In the United States, the length of stay for patients with HAIs was 26.3 days versus 5.69 days for uninfected patients [52]. In developing countries, HAIs have been associated with additional hospitalization ranging from 5 to 23 days [19][53].

The economic burden of HAIs is significant. In the United States, the annual cost of the five major HAIs in adult inpatients is estimated at \$9.8 billion, with SSIs accounting for the largest proportion (33.7%), followed by VAP (31.7%), CLABSI (18.9%), CDI (15.4%), and CAUTI (0.3%) [54]. The total annual economic impact of HAIs is estimated at \$28 to \$45 billion in the US, while in Europe, HAIs cost approximately €7 billion annually [17]. Complications arising from HAIs are highly variable and depend on infection type and severity. HAP and VAP may lead to respiratory failure, parapneumonic effusions, empyema, and sepsis. CLABSI can result in suppurative thrombophlebitis, endocarditis, septic arthritis, osteomyelitis, abscess formation, and systemic sepsis. CAUTI may involve upper urinary tract infections and bacteremia. SSIs can complicate wound healing, necessitate removal of prosthetic devices, promote abscess formation, or cause systemic infections. Healthcare-onset CDI can result in recurrent or refractory infection, ileus, toxic megacolon, dehydration, and sepsis.

Patient Education

Hand hygiene represents the cornerstone of HAI prevention and remains the single most effective measure to limit transmission. Transient pathogenic microorganisms on healthcare personnel's hands can be efficiently removed through consistent hand hygiene, thereby reducing patient colonization and environmental contamination. The World Health Organization identifies five critical moments for hand hygiene: before patient contact, prior to clean or aseptic procedures, following exposure to body fluids, after patient contact, and after contact with patient surroundings [55]. Alcohol-based hand sanitizers are preferred unless hands are visibly soiled, after contact with bodily fluids or toileting, or following exposure to spore-forming pathogens such as *C difficile* [55]. Adherence to these practices significantly diminishes HAI transmission [56][57]. Standard precautions, including gloves, gowns, masks, and eye protection, protect healthcare professionals from exposure to infectious agents. Transmission-based precautions are implemented according to pathogen-specific routes: airborne precautions require fit-tested N95 respirators and negative pressure rooms; droplet precautions involve surgical masks and spatial distancing; and contact precautions include single-room placement with appropriate personal protective equipment, particularly for multidrug-resistant organisms and *C difficile*. Aseptic technique during invasive procedures remains critical to prevent pathogen introduction. Environmental contamination contributes substantially to HAI transmission. Studies have identified hospital water taps, door handles, and work surfaces as high-risk reservoirs [58]. Patient care equipment and surrounding environments require routine cleaning and disinfection, and hospital waste management must follow strict protocols to mitigate infection risk. An estimated 20%–25% of hospital waste represents a high-risk vector for HAI transmission and demands careful handling [58]. Antimicrobial stewardship programs focus on optimizing antibiotic use, monitoring resistance trends, and enforcing evidence-based prescribing policies. Despite high antibiotic prescription rates in outpatient settings, approximately 50% are deemed unnecessary, increasing risks for adverse drug events, *C difficile* infection, and antimicrobial resistance [59][60]. Patient education is integral to HAI prevention. Patients should be informed of their individualized risk profiles, modifiable contributors, and preventive measures. This includes smoking cessation, maintenance of personal hygiene, avoidance of surgical site shaving, and appropriate use of invasive devices. Educating patients on proper antibiotic use and adherence to prescribed therapy is essential to prevent misuse, reduce antimicrobial resistance, and limit complications.

Other Issues

HAIs are defined as infections occurring 48 hours or more after hospital admission or within 48 hours following a procedure or discharge. Ventilator-associated pneumonia arises 48 hours or more post-

intubation. CLABSI occurs in patients with central lines in situ or within 48 hours of removal, while CAUTI develops in patients with indwelling catheters or shortly after their removal. Surgical site infections occur within 30 days postoperatively, or up to 90 days if prosthetic material is used. *Clostridioides difficile* remains the most common pathogen in US hospitals, and VAP is the most frequent ICU-associated HAI. Hand hygiene is the single most effective preventive strategy.

Enhancing Healthcare Team Outcomes

HAIs were previously considered an inevitable consequence of hospitalization; however, evidence suggests that up to 65%–70% of CLABSIs and CAUTIs and 55% of VAPs and SSIs are preventable through rigorous infection control interventions [61]. Implementation of comprehensive infection prevention programs has resulted in measurable reductions in HAI incidence and shifts in predominant infection types. The World Health Organization continues to support these initiatives globally, with particular emphasis on strengthening surveillance and control systems in developing regions [4]. Effective infection prevention programs are grounded in quality improvement and require interdisciplinary collaboration. Hand hygiene, environmental and equipment disinfection, isolation precautions, and staff education are central components. Frontline personnel, including nurses, clinicians, technicians, and environmental service staff, play key roles, while pharmacists contribute through antimicrobial stewardship by promoting appropriate antibiotic use and mitigating resistance. Laboratory staff support accurate reporting of antibiograms and susceptibility patterns to facilitate stewardship programs [62]. Economic analyses demonstrate substantial financial benefits of HAI prevention. In US hospitals, 12,000 to 223,000 HAIs could be avoided annually, with potential savings of \$142 million to \$4.25 billion [63]. A study conducted between 2015 and 2018 showed that averting a single HAI, costing \$25,008, could yield a financial benefit of \$582,464, emphasizing the impact of prevention on resource utilization and patient throughput [52]. Over the last decade, HAI prevalence in the US has declined, particularly for SSIs and CAUTIs, attributed to quality improvement measures. However, non-ventilator HAP and CDI have shown minimal reduction, indicating areas requiring enhanced surveillance and preventive strategies. Modeling suggests that a 50% reduction in non-ventilator HAP could prevent 9,886 deaths, avoid 487,622 hospital days, and reduce annual costs by \$2.43 billion [64]. Improved surveillance, especially in long-term care facilities, represents a critical avenue for advancing nationwide HAI prevention.

Conclusion:

Healthcare-associated infections continue to impose a significant clinical and economic burden across healthcare systems globally. Despite advancements in surveillance and infection control, HAIs persist due to invasive procedures, increased antimicrobial resistance, and the complexity of modern patient care. The article highlights that pneumonia, CAUTI, CLABSI, SSI, and *C. difficile* infection remain predominant contributors, with multidrug-resistant organisms further intensifying morbidity and mortality. Effective reduction of HAIs requires early recognition, targeted diagnostics, and tailored antimicrobial therapy supported by strong stewardship programs. Prevention remains the cornerstone of HAI mitigation, with hand hygiene, aseptic technique, environmental sanitation, and multidisciplinary engagement proving highly effective. Evidence shows that over half of major HAIs are preventable through rigorous implementation of evidence-based strategies. A unified, system-wide commitment to infection control, staff education, and patient involvement is essential to improving outcomes, safeguarding healthcare environments, and reducing the long-term burden of HAIs.

References:

1. Magill SS, O'Leary E, Janelle SJ, Thompson DL, Dumyati G, Nadle J, Wilson LE, Kainer MA, Lynfield R, Greissman S, Ray SM, Beldavs Z, Gross C, Bamberg W, Sievers M, Concannon C, Buhr N, Warnke L, Maloney M, Ocampo V, Brooks J, Oyewumi T, Sharmin S, Richards K, Rainbow J, Samper M, Hancock EB, Leaptrot D, Scalise E, Badrun F, Phelps R, Edwards JR, Emerging Infections Program Hospital Prevalence Survey Team. Changes in Prevalence of Health Care-Associated Infections in U.S. Hospitals. *The New England journal of medicine*. 2018 Nov 1:379(18):1732-1744. doi: 10.1056/NEJMoa1801550.
2. Suetens C, Latour K, Kärki T, Ricchizzi E, Kinross P, Moro ML, Jans B, Hopkins S, Hansen S, Lyytikäinen O, Reilly J, Deptula A, Zingg W, Plachouras D, Monnet DL, Healthcare-Associated

Infections Prevalence Study Group. Prevalence of healthcare-associated infections, estimated incidence and composite antimicrobial resistance index in acute care hospitals and long-term care facilities: results from two European point prevalence surveys, 2016 to 2017. *Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin*. 2018 Nov;23(46):. doi: 10.2807/1560-7917.ES.2018.23.46.1800516.

3. Allegranzi B, Bagheri Nejad S, Combescure C, Graafmans W, Attar H, Donaldson L, Pittet D. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. *Lancet (London, England)*. 2011 Jan 15;377(9761):228-41. doi: 10.1016/S0140-6736(10)61458-4.
4. Storr J, Twyman A, Zingg W, Damani N, Kilpatrick C, Reilly J, Price L, Egger M, Grayson ML, Kelley E, Allegranzi B, WHO Guidelines Development Group. Core components for effective infection prevention and control programmes: new WHO evidence-based recommendations. *Antimicrobial resistance and infection control*. 2017;6():6. doi: 10.1186/s13756-016-0149-9.
5. Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, Lynfield R, Maloney M, McAllister-Hollob L, Nadle J, Ray SM, Thompson DL, Wilson LE, Fridkin SK, Emerging Infections Program Healthcare-Associated Infections and Antimicrobial Use Prevalence Survey Team. Multistate point-prevalence survey of health care-associated infections. *The New England journal of medicine*. 2014 Mar 27;370(13):1198-208. doi: 10.1056/NEJMoa1306801.
6. Ewan VC, Witham MD, Kiernan M, Simpson AJ. Hospital-acquired pneumonia surveillance-an unmet need. *The Lancet. Respiratory medicine*. 2017 Oct;5(10):771-772. doi: 10.1016/S2213-2600(17)30296-5.
7. Falagas ME, Kopterides P, Siempos II. Attributable mortality of *Acinetobacter baumannii* infection among critically ill patients. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America*. 2006 Aug 1;43(3):389; author reply 389-90
8. Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, Moreno R, Lipman J, Gomersall C, Sakr Y, Reinhart K, EPIC II Group of Investigators. International study of the prevalence and outcomes of infection in intensive care units. *JAMA*. 2009 Dec 2;302(21):2323-9. doi: 10.1001/jama.2009.1754.
9. Jernigan JA, Hatfield KM, Wolford H, Nelson RE, Olubajo B, Reddy SC, McCarthy N, Paul P, McDonald LC, Kallen A, Fiore A, Craig M, Baggs J. Multidrug-Resistant Bacterial Infections in U.S. Hospitalized Patients, 2012-2017. *The New England journal of medicine*. 2020 Apr 2;382(14):1309-1319. doi: 10.1056/NEJMoa1914433.
10. Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A, Kallen A, Limbago B, Fridkin S, National Healthcare Safety Network (NHSN) Team and Participating NHSN Facilities. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. *Infection control and hospital epidemiology*. 2013 Jan;34(1):1-14. doi: 10.1086/668770.
11. Spivak ES, Hanson KE. *Candida auris*: an Emerging Fungal Pathogen. *Journal of clinical microbiology*. 2018 Feb;56(2):. doi: 10.1128/JCM.01588-17.
12. Weiner LM, Webb AK, Limbago B, Duke MA, Patel J, Kallen AJ, Edwards JR, Sievert DM. Antimicrobial-Resistant Pathogens Associated With Healthcare-Associated Infections: Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011-2014. *Infection control and hospital epidemiology*. 2016 Nov;37(11):1288-1301
13. Park JH, Ryu SH, Lee JY, Kim HJ, Kwak SH, Jung J, Lee J, Sung H, Kim SH. Airborne fungal spores and invasive aspergillosis in hematologic units in a tertiary hospital during construction: a prospective cohort study. *Antimicrobial resistance and infection control*. 2019;8():88. doi: 10.1186/s13756-019-0543-1.
14. Lemaire B, Normand AC, Forel JM, Cassir N, Piarroux R, Ranque S. Hospitalized Patient as Source of *Aspergillus fumigatus*, 2015. *Emerging infectious diseases*. 2018 Aug;24(8):1524-1527. doi: 10.3201/eid2408.171865.
15. Aitken C, Jeffries DJ. Nosocomial spread of viral disease. *Clinical microbiology reviews*. 2001 Jul;14(3):528-46

16. Ganczak M, Barss P. Nosocomial HIV infection: epidemiology and prevention--a global perspective. *AIDS reviews*. 2008 Jan-Mar;10(1):47-61
17. Vincent JL, Bihari DJ, Suter PM, Bruining HA, White J, Nicolas-Chanoin MH, Wolff M, Spencer RC, Hemmer M. The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee. *JAMA*. 1995 Aug 23-30;274(8):639-44
18. Klevens RM, Edwards JR, Richards CL Jr, Horan TC, Gaynes RP, Pollock DA, Cardo DM. Estimating health care-associated infections and deaths in U.S. hospitals, 2002. *Public health reports (Washington, D.C. : 1974)*. 2007 Mar-Apr;122(2):160-6
19. Ling ML, Apisarnthanarak A, Madriaga G. The Burden of Healthcare-Associated Infections in Southeast Asia: A Systematic Literature Review and Meta-analysis. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America*. 2015 Jun 1;60(11):1690-9. doi: 10.1093/cid/civ095
20. Ferioli M, Cisternino C, Leo V, Pisani L, Palange P, Nava S. Protecting healthcare workers from SARS-CoV-2 infection: practical indications. *European respiratory review : an official journal of the European Respiratory Society*. 2020 Mar 31;29(155):. doi: 10.1183/16000617.0068-2020.
21. Climo M, Diekema D, Warren DK, Herwaldt LA, Perl TM, Peterson L, Plaskett T, Price C, Sepkowitz K, Solomon S, Tokars J, Fraser VJ, Wong E. Prevalence of the use of central venous access devices within and outside of the intensive care unit: results of a survey among hospitals in the prevention epicenter program of the Centers for Disease Control and Prevention. *Infection control and hospital epidemiology*. 2003 Dec;24(12):942-5
22. Bell T, O'Grady NP. Prevention of Central Line-Associated Bloodstream Infections. *Infectious disease clinics of North America*. 2017 Sep;31(3):551-559. doi: 10.1016/j.idc.2017.05.007.
23. Baier C, Linke L, Eder M, Schwab F, Chaberny IF, Vonberg RP, Ebadi E. Incidence, risk factors and healthcare costs of central line-associated nosocomial bloodstream infections in hematologic and oncologic patients. *PloS one*. 2020;15(1):e0227772. doi: 10.1371/journal.pone.0227772.
24. Letica-Kriegel AS, Salmasian H, Vawdrey DK, Youngerman BE, Green RA, Furuya EY, Calfee DP, Perotte R. Identifying the risk factors for catheter-associated urinary tract infections: a large cross-sectional study of six hospitals. *BMJ open*. 2019 Feb 21;9(2):e022137. doi: 10.1136/bmjopen-2018-022137.
25. Isikgoz Tasbakan M, Durusoy R, Pullukcu H, Sipahi OR, Ulusoy S, 2011 Turkish Nosocomial Urinary Tract Infection Study Group. Hospital-acquired urinary tract infection point prevalence in Turkey: differences in risk factors among patient groups. *Annals of clinical microbiology and antimicrobials*. 2013 Nov 4;12():31. doi: 10.1186/1476-0711-12-31.
26. Anderson DJ, Podgorny K, Berrios-Torres SI, Bratzler DW, Dellinger EP, Greene L, Nyquist AC, Saiman L, Yokoe DS, Maragakis LL, Kaye KS. Strategies to prevent surgical site infections in acute care hospitals: 2014 update. *Infection control and hospital epidemiology*. 2014 Sep;35 Suppl 2():S66-88
27. Mukagendaneza MJ, Munyaneza E, Muhawenayo E, Nyirasebura D, Abahuje E, Nyirigira J, Harelimana JD, Muvunyi TZ, Masaisa F, Byiringiro JC, Hagegekimana T, Muvunyi CM. Incidence, root causes, and outcomes of surgical site infections in a tertiary care hospital in Rwanda: a prospective observational cohort study. *Patient safety in surgery*. 2019;13():10. doi: 10.1186/s13037-019-0190-8.
28. Mioton LM, Jordan SW, Hanwright PJ, Bilimoria KY, Kim JY. The Relationship between Preoperative Wound Classification and Postoperative Infection: A Multi-Institutional Analysis of 15,289 Patients. *Archives of plastic surgery*. 2013 Sep;40(5):522-9. doi: 10.5999/aps.2013.40.5.522.
29. Gibbons C, Bruce J, Carpenter J, Wilson AP, Wilson J, Pearson A, Lamping DL, Krukowski ZH, Reeves BC. Identification of risk factors by systematic review and development of risk-adjusted models for surgical site infection. *Health technology assessment (Winchester, England)*. 2011 Sep;15(30):1-156, iii-iv. doi: 10.3310/hta15300.
30. Klompas M, Branson R, Eichenwald EC, Greene LR, Howell MD, Lee G, Magill SS, Maragakis LL, Priebe GP, Speck K, Yokoe DS, Berenholtz SM. Strategies to prevent ventilator-associated pneumonia in acute care hospitals: 2014 update. *Infection control and hospital epidemiology*. 2014 Sep;35 Suppl 2():S133

31. Komiya K, Ishii H, Kadota J. Healthcare-associated Pneumonia and Aspiration Pneumonia. *Aging and disease*. 2015 Feb;6(1):27-37. doi: 10.14336/AD.2014.0127.
32. Kózka M, Segal A, Wojnar-Gruszka K, Tarnawska A, Gniadek A. Risk Factors of Pneumonia Associated with Mechanical Ventilation. *International journal of environmental research and public health*. 2020 Jan 19;17(2):. doi: 10.3390/ijerph17020656.
33. Kumar ST, Yassin A, Bhowmick T, Dixit D. Recommendations From the 2016 Guidelines for the Management of Adults With Hospital-Acquired or Ventilator-Associated Pneumonia. *P & T : a peer-reviewed journal for formulary management*. 2017 Dec;42(12):767-772.
34. Roberts K, Smith CF, Snelling AM, Kerr KG, Banfield KR, Sleigh PA, Beggs CB. Aerial dissemination of *Clostridium difficile* spores. *BMC infectious diseases*. 2008 Jan 24;8():7. doi: 10.1186/1471-2334-8-7.
35. Loo VG, Bourgault AM, Poirier L, Lamothe F, Michaud S, Turgeon N, Toye B, Beaudoin A, Frost EH, Gilca R, Brassard P, Dendukuri N, Bélineau C, Oughton M, Brukner I, Dascal A. Host and pathogen factors for *Clostridium difficile* infection and colonization. *The New England journal of medicine*. 2011 Nov 3;365(18):1693-703. doi: 10.1056/NEJMoa1012413.
36. Papazian L, Klompas M, Luyt CE. Ventilator-associated pneumonia in adults: a narrative review. *Intensive care medicine*. 2020 May;46(5):888-906. doi: 10.1007/s00134-020-05980-0.
37. Polage CR, Gyorke CE, Kennedy MA, Leslie JL, Chin DL, Wang S, Nguyen HH, Huang B, Tang YW, Lee LW, Kim K, Taylor S, Romano PS, Panacek EA, Goodell PB, Solnick JV, Cohen SH. Overdiagnosis of *Clostridium difficile* Infection in the Molecular Test Era. *JAMA internal medicine*. 2015 Nov;175(11):1792-801. doi: 10.1001/jamainternmed.2015.4114.
38. Madden GR, Poulter MD, Sifri CD. Diagnostic stewardship and the 2017 update of the IDSA-SHEA Clinical Practice Guidelines for *Clostridium difficile* Infection. *Diagnosis* (Berlin, Germany). 2018 Sep 25;5(3):119-125. doi: 10.1515/dx-2018-0012.
39. Lutwick L, Al-Maani AS, Mehtar S, Memish Z, Rosenthal VD, Dramowski A, Lui G, Osman T, Bulabula A, Bearman G. Managing and preventing vascular catheter infections: A position paper of the international society for infectious diseases. *International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases*. 2019 Jul;84():22-29. doi: 10.1016/j.ijid.2019.04.014.
40. Hooton TM, Bradley SF, Cardenas DD, Colgan R, Geerlings SE, Rice JC, Saint S, Schaeffer AJ, Tambayah PA, Tenke P, Nicolle LE, Infectious Diseases Society of America. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America*. 2010 Mar 1;50(5):625-63.
41. Bratzler DW, Dellinger EP, Olsen KM, Perl TM, Auwaerter PG, Bolon MK, Fish DN, Napolitano LM, Sawyer RG, Slain D, Steinberg JP, Weinstein RA, American Society of Health-System Pharmacists (ASHP), Infectious Diseases Society of America (IDSA), Surgical Infection Society (SIS), Society for Healthcare Epidemiology of America (SHEA). Clinical practice guidelines for antimicrobial prophylaxis in surgery. *Surgical infections*. 2013 Feb;14(1):73-156. doi: 10.1089/sur.2013.9999.
42. Khanna S, Assi M, Lee C, Yoho D, Louie T, Knapple W, Aguilar H, Garcia-Diaz J, Wang GP, Berry SM, Marion J, Su X, Braun T, Bancke L, Feuerstadt P. Efficacy and Safety of RBX2660 in PUNCH CD3, a Phase III, Randomized, Double-Blind, Placebo-Controlled Trial with a Bayesian Primary Analysis for the Prevention of Recurrent *Clostridioides difficile* Infection. *Drugs*. 2022 Oct;82(15):1527-1538. doi: 10.1007/s40265-022-01797-x.
43. Feuerstadt P, Louie TJ, Lashner B, Wang EEL, Diao L, Bryant JA, Sims M, Kraft CS, Cohen SH, Berenson CS, Korman LY, Ford CB, Litcofsky KD, Lombardo MJ, Wortman JR, Wu H, Auniş JG, McChalicher CWJ, Winkler JA, McGovern BH, Trucks M, Henn MR, von Moltke L. SER-109, an Oral Microbiome Therapy for Recurrent *Clostridioides difficile* Infection. *The New England journal of medicine*. 2022 Jan 20;386(3):220-229. doi: 10.1056/NEJMoa2106516.
44. Dinleyici M, Vandenplas Y. *Clostridium difficile* Colitis Prevention and Treatment. *Advances in experimental medicine and biology*. 2019;1125():139-146. doi: 10.1007/5584_2018_322.
45. Polage CR, Solnick JV, Cohen SH. Nosocomial diarrhea: evaluation and treatment of causes other than *Clostridium difficile*. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America*. 2012 Oct;55(7):982-9. doi: 10.1093/cid/cis551.

46. Koch AM, Nilsen RM, Eriksen HM, Cox RJ, Harthug S. Mortality related to hospital-associated infections in a tertiary hospital; repeated cross-sectional studies between 2004-2011. *Antimicrobial resistance and infection control*. 2015;4():57. doi: 10.1186/s13756-015-0097-9.
47. Kanerva M, Ollgren J, Virtanen MJ, Lyytikäinen O, Prevalence Survey Study Group. Risk factors for death in a cohort of patients with and without healthcare-associated infections in Finnish acute care hospitals. *The Journal of hospital infection*. 2008 Dec;70(4):353-60. doi: 10.1016/j.jhin.2008.08.009.
48. Vincent JL. Nosocomial infections in adult intensive-care units. *Lancet (London, England)*. 2003 Jun 14;361(9374):2068-77
49. Soufir L, Timsit JF, Mahe C, Carlet J, Regnier B, Chevret S. Attributable morbidity and mortality of catheter-related septicemia in critically ill patients: a matched, risk-adjusted, cohort study. *Infection control and hospital epidemiology*. 1999 Jun;20(6):396-401
50. Rosenthal VD, Maki DG, Jamulirat S, Medeiros EA, Todi SK, Gomez DY, Leblebicioglu H, Abu Khader I, Miranda Novales MG, Berba R, Ramírez Wong FM, Barkat A, Pino OR, Dueñas L, Mitrev Z, Bijie H, Gurskis V, Kanj SS, Mapp T, Hidalgo RF, Ben Jaballah N, Raka L, Gikas A, Ahmed A, Thu le TA, Guzmán Siritt ME, INICC Members. International Nosocomial Infection Control Consortium (INICC) report, data summary for 2003-2008, issued June 2009. *American journal of infection control*. 2010 Mar;38(2):95-104.e2. doi: 10.1016/j.ajic.2009.12.004.
51. Arefian H, Hagel S, Fischer D, Scherag A, Brunkhorst FM, Maschmann J, Hartmann M. Estimating extra length of stay due to healthcare-associated infections before and after implementation of a hospital-wide infection control program. *PloS one*. 2019;14(5):e0217159. doi: 10.1371/journal.pone.0217159.
52. Shepard J, Frederick J, Wong F, Madison S, Tompkins L, Hadhazy E. Could the prevention of health care-associated infections increase hospital cost? The financial impact of health care-associated infections from a hospital management perspective. *American journal of infection control*. 2020 Mar;48(3):255-260. doi: 10.1016/j.ajic.2019.08.035.
53. Esatoğlu AE, Agirbas I, Onder OR, Celik Y. Additional cost of hospital-acquired infection to the patient: a case study in Turkey. *Health services management research*. 2006 Aug;19(3):137-43
54. Zimlichman E, Henderson D, Tamir O, Franz C, Song P, Yamin CK, Keohane C, Denham CR, Bates DW. Health care-associated infections: a meta-analysis of costs and financial impact on the US health care system. *JAMA internal medicine*. 2013 Dec 9-23;173(22):2039-46. doi: 10.1001/jamainternmed.2013.9763.
55. Mathai E, Allegranzi B, Kilpatrick C, Pittet D. Prevention and control of health care-associated infections through improved hand hygiene. *Indian journal of medical microbiology*. 2010 Apr-Jun;28(2):100-6. doi: 10.4103/0255-0857.62483.
56. Pittet D, Allegranzi B, Sax H, Dharan S, Pessoa-Silva CL, Donaldson L, Boyce JM, WHO Global Patient Safety Challenge, World Alliance for Patient Safety. Evidence-based model for hand transmission during patient care and the role of improved practices. *The Lancet. Infectious diseases*. 2006 Oct;6(10):641-52
57. Allegranzi B, Pittet D. Role of hand hygiene in healthcare-associated infection prevention. *The Journal of hospital infection*. 2009 Dec;73(4):305-15. doi: 10.1016/j.jhin.2009.04.019.
58. Bagheri Nejad S, Allegranzi B, Syed SB, Ellis B, Pittet D. Health-care-associated infection in Africa: a systematic review. *Bulletin of the World Health Organization*. 2011 Oct 1;89(10):757-65. doi: 10.2471/BLT.11.088179.
59. Colgan R, Powers JH. Appropriate antimicrobial prescribing: approaches that limit antibiotic resistance. *American family physician*. 2001 Sep 15;64(6):999-1004
60. Weiner LM, Fridkin SK, Aponte-Torres Z, Avery L, Coffin N, Dudeck MA, Edwards JR, Jernigan JA, Konnor R, Soe MM, Peterson K, McDonald LC. Vital Signs: Preventing Antibiotic-Resistant Infections in Hospitals - United States, 2014. *MMWR. Morbidity and mortality weekly report*. 2016 Mar 11;65(9):235-41. doi: 10.15585/mmwr.mm6509e1.
61. Umscheid CA, Mitchell MD, Doshi JA, Agarwal R, Williams K, Brennan PJ. Estimating the proportion of healthcare-associated infections that are reasonably preventable and the related mortality and costs. *Infection control and hospital epidemiology*. 2011 Feb;32(2):101-14. doi: 10.1086/657912.

62. Yokoe DS, Anderson DJ, Berenholtz SM, Calfee DP, Dubberke ER, Ellingson KD, Gerding DN, Haas JP, Kaye KS, Klompas M, Lo E, Marschall J, Mermel LA, Nicolle LE, Salgado CD, Bryant K, Classen D, Crist K, Deloney VM, Fishman NO, Foster N, Goldmann DA, Humphreys E, Jernigan JA, Padberg J, Perl TM, Podgorny K, Septimus EJ, VanAmringe M, Weaver T, Weinstein RA, Wise R, Maragakis LL. A compendium of strategies to prevent healthcare-associated infections in acute care hospitals: 2014 updates. *Infection control and hospital epidemiology*. 2014 Sep;35 Suppl 2():S21-31
63. Schmier JK, Hulme-Lowe CK, Semenova S, Klenk JA, DeLeo PC, Sedlak R, Carlson PA. Estimated hospital costs associated with preventable health care-associated infections if health care antiseptic products were unavailable. *ClinicoEconomics and outcomes research : CEOR*. 2016;8():197-205. doi: 10.2147/CEOR.S102505. Epub 2016 May 13
64. Baker D, Quinn B. Hospital Acquired Pneumonia Prevention Initiative-2: Incidence of nonventilator hospital-acquired pneumonia in the United States. *American journal of infection control*. 2018 Jan;46(1):2-7. doi: 10.1016/j.ajic.2017.08.036. Epub 2017 Oct 16