

Integrating Biomedical Engineering And Pharmaceutical Sciences For Advanced Healthcare Innovation-An Updated Review

Mesfer Zaid Hathal Alkhamis¹, Fahad Mohmmmed Al Thafir², Mohammed Abdullah Alskhabrah³, Mohammed Razqan Matar Almutairi⁴, Mohammed Fahad Bin Zayid⁵, Sultan Ghusayn Aldawsari⁶, Mohammed Mahdi Mufarrah Al-Kubra⁷, Mohammed Abdullah Al Suliman⁸, Mishal Rashid Al Juma⁹, Nasser Saeed Alwuhayyid¹⁰, Zakaria Mohammed Al Muhaymid¹¹, Ibrahim Abdullahi Alnughaythir¹², Shaluq Meshal Shaluq Alshammari¹³, Abdulrahman Abdullah I Alnughaythir¹⁴

¹Al-Aflaj Hospital

²Al-Aflaj Hospital

³Al-Aflaj Hospital

⁴King Saud University

⁵King Saud University

⁶Al-Aflaj Hospital

⁷Al-Aflaj Hospital

⁸Al-Aflaj Hospital

⁹Al-Aflaj General Hospital

¹⁰Al-Aflaj General Hospital

¹¹Al-Aflaj Hospital

¹²Rafaya Al Gamsh Hospital

¹³Shqra General Hospital

¹⁴Shqra General Hospital

Abstract:

Background: The integration of biomedical engineering and pharmaceutical sciences has become a driving force behind modern healthcare innovation. The article highlights how advancements in imaging, biosensors, biochips, and drug-delivery systems collectively reshape clinical practice and patient outcomes.

Aim: The primary objective was to review current biomedical engineering technologies, their mechanisms, and their contributions to diagnostics, monitoring, and therapeutic delivery across healthcare systems.

Methods: The article synthesizes evidence from major biomedical domains, including medical imaging, biosensor technologies (wearable and non-wearable), microarray and microfluidic biochips, and engineered drug-delivery platforms. It draws on documented applications, technological principles, and clinical outcomes to construct an updated interdisciplinary overview.

Results: Biomedical engineering innovations have significantly enhanced diagnostic precision, expanded real-time physiological monitoring, and enabled targeted therapeutic delivery. AI-assisted imaging markedly accelerates analysis and improves diagnostic accuracy, while nanoscale biosensors achieve high sensitivity for clinical and environmental detection. Wearable and non-wearable sensors strengthen continuous care, chronic disease management, and remote monitoring. Biochip platforms support high-throughput genetic, proteomic, and cellular analyses, advancing personalized medicine and drug discovery. Nanotechnology-enabled drug-delivery systems improve targeting, bioavailability, and controlled release.

Conclusion: The convergence of engineering and biomedical sciences has transformed healthcare into a more precise, data-driven, and patient-centered system. Continued development of intelligent imaging systems, nanoscale biosensors, microfluidic biochips, and engineered drug-delivery platforms will accelerate personalized and predictive medicine. These technologies collectively advance early

diagnosis, optimized therapy, and continuous monitoring, ultimately improving patient outcomes and reducing healthcare burdens.

Keywords: Biomedical engineering, biosensors, medical imaging, biochips, drug delivery systems, nanotechnology, healthcare innovation.

Introduction:

The interaction between engineering and biomedical sciences has fundamentally reshaped modern healthcare systems and clinical practice. Biomedical engineering emerged in the mid-twentieth century as a structured response to the growing need for collaboration between engineers and medical professionals, creating a scientific framework for addressing complex clinical challenges through technology [1]. This field integrates biological sciences, physiology, and medicine with engineering disciplines such as mechanical, electrical, chemical, and materials engineering, enabling the systematic translation of scientific knowledge into healthcare solutions [2]. Initially regarded as a specialized interdisciplinary extension of established scientific domains, biomedical engineering has matured into a distinct discipline with defined research methods, professional standards, and clinical applications. The objective of this article is to provide a comprehensive academic overview of the transformative impact produced by the integration of engineering and biomedical sciences on healthcare delivery. The discussion traces the evolution of biomedical engineering from its interdisciplinary foundations to its current status as a central driver of healthcare innovation. Emphasis is placed on critical applications including medical device development, medical equipment management, and the design of biocompatible prosthetic systems. These areas demonstrate how engineering principles contribute directly to improving patient outcomes, enhancing clinical efficiency, and reducing procedural risk. In addition to these established domains, the article extends its scope to emerging areas such as green biomaterials, reflecting the increasing importance of environmentally sustainable solutions within biomedical applications [3].

Biomedical engineering continues to contribute significantly to healthcare through rapid technological advancement. Innovations in telemedicine, electronic health records, and artificial intelligence-based diagnostic systems have introduced measurable improvements in patient care quality, operational efficiency, and cost control [4]. Electronic health records represent a particularly impactful development, as they support comprehensive data storage, facilitate interdisciplinary communication, and improve continuity of care across healthcare settings [5]. These systems enhance clinical decision-making by enabling timely access to accurate patient information while reducing administrative inefficiencies. Beyond human healthcare applications, biomedical engineering recognizes the universality of biological principles across living systems. As a result, the field encompasses a wide range of subdisciplines, including bioinformatics, biomechanics, biomaterials, biomedical optics, tissue engineering, genetic engineering, neural engineering, pharmaceutical engineering, and hospital and medical device engineering [6]. This breadth reflects the field's capacity to address biological complexity through engineering-based analytical and technological approaches. Medical imaging and diagnosis represent a core domain in which biomedical engineering has produced transformative outcomes. Medical imaging involves the visual representation of internal body structures and physiological processes for clinical assessment and scientific investigation [7]. It forms a foundational component of modern healthcare and includes radiological and non-radiological techniques such as digital mammography, sonography, computed tomography, magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography, endoscopy, and electrical impedance tomography [8]. These technologies enable early disease detection, treatment planning, and monitoring of therapeutic response in conditions such as cancer, trauma, neurological disorders, and cardiovascular disease [9].

Despite their clinical value, medical imaging modalities face limitations including high operational costs, radiation exposure, image noise, artifacts, and resolution constraints [10]. Recent integration of artificial intelligence has addressed many of these challenges by enhancing image acquisition, processing, and interpretation. AI-based algorithms developed through engineering expertise have transformed diagnostic workflows, significantly accelerated image analysis and improving accuracy. In computed tomography imaging, AI-assisted processing can achieve speeds up to 240 times faster than conventional methods, enabling rapid segmentation, classification, and annotation of complex image

data [11]. These advancements support clinicians in diagnosing and managing diseases such as cancer, stroke, and brain tumors with greater precision [12], while also providing predictive insights related to prognosis, treatment selection, and risk assessment [13]. Medical image processing further illustrates the convergence of engineering, machine learning, and clinical practice. Through the analysis of two-, three-, and four-dimensional imaging data obtained from modalities such as CT, MRI, micro-CT, and focused ion beam scanning electron microscopy, advanced algorithms extract clinically relevant features that are not visible to the human eye [14]. Techniques including image segmentation, morphological analysis, and feature extraction enable accurate identification of anatomical regions and pathological changes. Machine learning models trained on these data sets, such as convolutional neural networks and support vector machines, enhance diagnostic reliability and clinical decision support [15]. Deep learning approaches now dominate this domain, particularly in radiology, where they support lesion detection, organ segmentation, and image registration [11].

Photoacoustic imaging represents another significant advancement within medical imaging. By combining optical excitation with ultrasonic detection, this technique provides high-resolution, noninvasive imaging based on tissue optical absorption properties [16]. Photoacoustic tomography further expands these capabilities by enabling molecular imaging through endogenous chromophores or exogenous contrast agents, achieving high sensitivity and spatial resolution in biological tissues [17,18]. Continued development of contrast agents and imaging systems has enhanced detection sensitivity from millimolar to picomolar ranges, supporting applications in cancer detection and molecular diagnostics [19–23]. Engineered nanoparticles have proven particularly effective due to their tunable optical properties, enabling multimodal imaging approaches that integrate photoacoustic, magnetic resonance, and Raman techniques [24]. Finally, biomedical image processing supports the development of patient-specific computational models used to simulate surgical outcomes and optimize clinical interventions. Finite element models derived from imaging data allow detailed mechanical evaluation of procedures such as pedicle screw fixation in spinal surgery. These models assist in optimizing implant design, placement, and loading conditions, reducing postoperative complications and revision rates that currently affect approximately six percent of cases [25,26]. Through such applications, biomedical engineering demonstrates its critical role in advancing precision medicine and improving long-term patient outcomes.

Advancement in biosensors

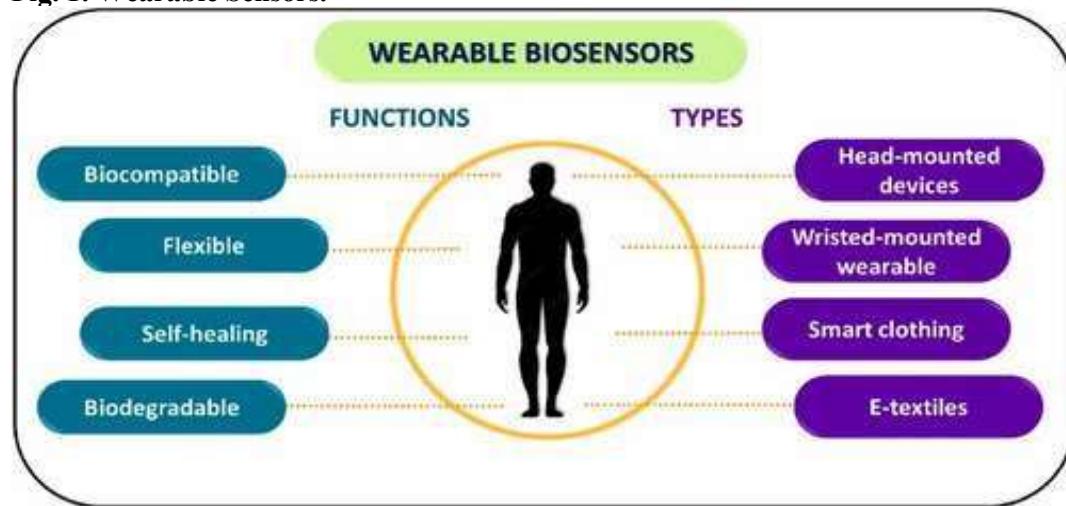
Sensors are defined as devices capable of detecting a specific physical, chemical, or biological parameter and converting that input into a measurable output signal according to a defined operating principle [27]. In most sensor systems, a transducer element directly interacts with the target parameter and generates a signal that is subsequently processed by integrated electronic components. Among the broad range of sensing technologies, biosensors occupy a distinct position due to their ability to translate biological information into quantifiable electrical signals [28]. This characteristic enables direct interaction with biological systems and makes biosensors particularly valuable for medical and healthcare applications. Biomedical sensors can be broadly classified based on the type of physiological data they detect, including physical, chemical, and biological parameters. These sensors are extensively employed in laboratory-based analytical testing, clinical diagnostics, portable diagnostic devices, and medical imaging and diagnostic systems [29]. Their expanding role reflects the increasing demand for rapid, accurate, and minimally invasive diagnostic technologies. Biosensors also provide cost-effective solutions for remote health monitoring, which can be categorized into wearable and non-wearable systems. These technologies allow continuous assessment of vital physiological indicators, facilitate real-time data acquisition, and enable healthcare professionals to monitor patients from geographically distant locations [30]. Such capabilities are increasingly important for chronic disease management, aging populations, and healthcare delivery in remote or resource-limited settings.

Recent advances in nanotechnology have significantly enhanced the performance of biosensors, particularly through the incorporation of nanoparticles. Nanomaterials exhibit properties distinct from their bulk counterparts, including high surface-to-volume ratios and enhanced magnetic, optical, and electrical characteristics. These attributes have led to improved sensitivity, lower limits of detection, and higher analytical accuracy in biosensing applications. A wide variety of nanomaterials have been introduced into biosensor platforms, including metallic nanoparticles such as gold, silver, platinum, iron, titanium, and copper [60]. In addition, nonmetallic and metalloid elements such as silicon,

phosphorus, boron, and carbon are used either independently or in composite forms with metals to enhance sensor functionality [30]. Biopolymers also play a critical role in nanobiosensor fabrication, particularly in surface modification and protective coating processes that improve biocompatibility and signal stability [61]. Among metallic nanomaterials, gold nanoparticles have received particular attention due to their unique surface properties and chemical stability. One of their most significant features is surface plasmon resonance, a phenomenon in which localized electron oscillations vary according to particle size and shape, producing measurable changes in optical absorption and solution color [62]. This property makes gold nanoparticles highly effective transduction elements in biosensors. Interactions between analytes and gold nanoparticles alter parameters such as electrical conductivity and optical response, generating detectable diagnostic signals. Both surface plasmon resonance effects and redox behavior contribute to their effectiveness in biosensing systems [63]. Consequently, gold nanoparticles are widely employed in diverse morphologies, including nanospheres, nanorods, and nanopatterned structures [64].

Numerous diagnostic applications demonstrate the versatility of gold-based biosensors. Gold nanorods modified with viral antigens have been successfully applied in the detection of Hepatitis B virus, where analyte binding induced measurable spectral shifts [65]. Similar approaches have been reported for HIV-1 detection using gold dot nanopatterns on indium tin oxide substrates and for prostate-specific antigen detection using spherical gold nanoparticles in optical biosensors. Beyond clinical diagnostics, gold nanoparticles have also been integrated into electrochemical biosensors for environmental monitoring, particularly for the detection of organophosphorus pesticides. These systems achieve extremely low detection limits in the femtomolar and picomolar ranges, underscoring their high sensitivity [64]. Gold nanoparticles have further enabled calorimetric detection of various antibiotics, including amoxicillin, chloramphenicol, kanamycin, tetracycline, oxytetracycline, and streptomycin [66]. In parallel, silicon and magnetic nanoparticles have emerged as powerful tools for detecting health-related hazards. Magnetic nanoparticles are utilized either through direct attachment to transducer surfaces or by dispersion within samples followed by magnetic field manipulation. Silicon nanoparticles have demonstrated effectiveness in detecting antibiotics such as penicillin and tetracycline, while magnetic nanoparticles have shown strong performance in identifying cancer biomarkers, carcinoembryonic antigen, and pathogenic bacteria including *Escherichia coli* and *Staphylococcus aureus* [67]. The strong electrochemical and biological affinity of these nanomaterials for specific targets supports their potential for improving diagnostic accuracy and therapeutic monitoring.

Silver nanoparticles have also gained prominence in biosensor development due to their large surface area, favorable electrocatalytic properties, and strong optical responses [68]. They have been extensively applied in glucose sensors and various nanobiosensor configurations [69]. Carbon-based nanomaterials, including nanotubes and graphene sheets, are widely used in protein, glucose, DNA, lateral flow, and impedance biosensors. However, concerns regarding potential adverse biological effects such as inflammation and fibrosis highlight the need for careful material selection and dosage control. Biosensor mechanisms depend strongly on the nature of the analyte and the intended application, with immunoassay techniques such as ELISA commonly used for protein detection and electrochemical or optical strategies applied for broader analyte classes [70]. Advances in polymer science have further expanded biosensor capabilities. Polymers with favorable mechanical and physicochemical properties offer advantages such as specificity, biocompatibility, renewability, and biodegradability [71]. These materials are increasingly used in point-of-care devices, medical diagnostics, and cellular imaging applications for detecting enzymes, proteins, infectious agents, and extracellular products [72]. Biopolymers such as starch, collagen, cellulose nanofibers, and short peptides contribute to sensor stability and functionality. Collectively, these advancements highlight the central role of biosensors in modern healthcare diagnostics and monitoring, driven by continued innovation in nanotechnology, materials science, and biomedical engineering.


Wearable biosensors

Wearable biosensors represent a major shift in the integration of sensing technologies with the human body, enabling continuous physiological monitoring outside conventional clinical environments. A wearable sensor is characterized by mobility, wearability, sustainability, ease of operation, and interactive functionality, allowing computing systems to be seamlessly incorporated into daily human

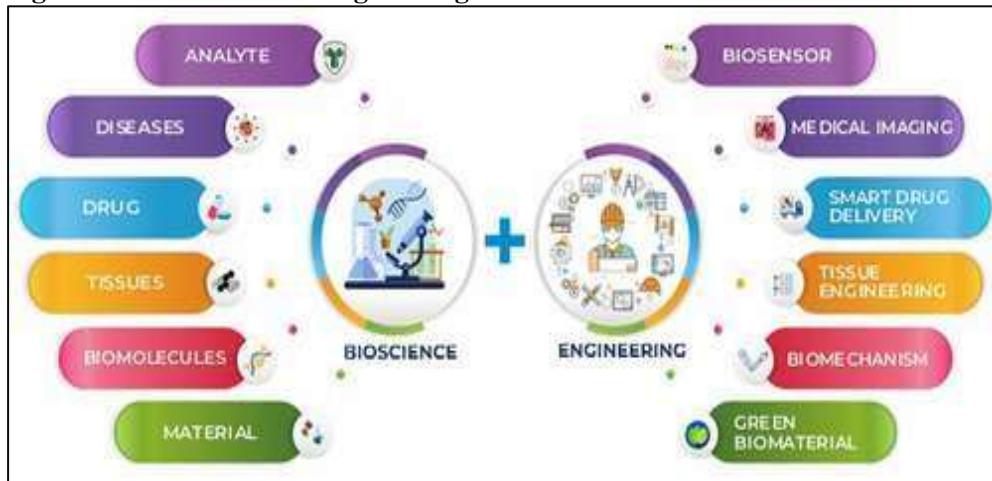
activity [73]. These devices typically integrate sensors, processing units, displays, and communication modules to form a digital ecosystem that enhances user comfort and accessibility through wireless connectivity [74]. The widespread adoption of wearable medical devices such as smartwatches, fitness bands, armbands, smart eyewear, and patch-based sensors reflects their growing importance across healthcare, consumer electronics, industrial monitoring, and military applications. Within wearable systems, sensors play a central role by functioning in a manner analogous to human skin, detecting changes in the external and internal environment and converting them into interpretable signals. Common examples include fitness trackers, smart garments, smartwatches, and continuous glucose monitoring systems [75]. These devices support diverse application domains, including medical monitoring of blood pressure, heart rate, and glucose levels, healthcare and wellness tracking of physical activity, consumer infotainment, and industrial or military data acquisition and visualization [76]. In healthcare settings, wearable biosensors provide clinicians with real-time physiological data, supporting early disease detection, treatment optimization, and long-term health management.

Technological progress in wearable biosensors is closely linked to advancements in microelectromechanical systems, sensor fusion, and internet-connected data platforms. The integration of MEMS-based sensors has enabled miniaturization, improved accuracy, and reduced power consumption, particularly in applications involving sports performance and physical activity monitoring [77]. Sensor fusion techniques further enhance data reliability by combining outputs from multiple sensor types, enabling comprehensive analysis of complex physiological states. The increasing connectivity of wearable devices to cloud-based platforms and the Internet of Things allows continuous data transmission, remote analysis, and personalized feedback. Flexible sensors have emerged as a critical innovation in wearable medical technology due to their compatibility with the mechanical properties of human tissue. These sensors rely on flexible materials and circuitry that allow them to conform closely to the body surface, improving comfort and signal fidelity [78]. Their thin, soft, and elastic structures make them suitable for long-term skin contact and continuous monitoring applications. Flexible wearable electronic sensors operate through several signal transduction mechanisms, including piezoresistive, capacitive, and piezoelectric effects, each offering distinct advantages depending on the targeted physiological parameter [79]. Continued progress in this area depends on advances in material synthesis, scalable fabrication techniques, and seamless device integration, alongside the development of new sensing principles capable of operating in complex and variable biological environments [80].

Fig. 1: Wearable Sensors.

Nanotechnology has further expanded the functional capabilities of wearable biosensors by enabling enhanced sensitivity, selectivity, and multifunctionality. Nanomaterials provide unique electrical, optical, and mechanical properties that are particularly valuable for detecting low-concentration biomarkers in noninvasive biofluids [81]. Sweat-based sensing platforms illustrate this potential, as they allow real-time analysis of metabolites, electrolytes, and hormones during daily activities and physical exercise. Integrated sensor arrays applied to the wrist or forearm have demonstrated multiplexed perspiration analysis, supporting monitoring of glucose, lactate, uric acid, urea, and electrolyte levels.

Graphene-based sensors, microfluidic sweat patches, and hybrid chemical-electrophysiological biosensors exemplify the range of wearable configurations developed for health and fitness monitoring. A key challenge in wearable biosensor development lies in achieving accurate noninvasive measurements. Although the human body contains abundant physiological information, accessing this data without blood sampling remains technically complex. Highly sensitive wearable biosensors offer a solution by reducing the psychological and physical burden associated with invasive procedures. One notable example is the development of contact lens-based glucose sensors, in which miniature electrochemical sensors embedded within hydrogel matrices enable glucose measurement from tear fluid. Collaborative efforts by technology and pharmaceutical companies have demonstrated the feasibility of this approach, highlighting its potential impact on diabetes management [82]. Beyond individual devices, wearable biosensors are increasingly evaluated through standardized performance metrics that include target biofluid, detection principle, intended application, and analytical sensitivity. Comparative analyses of these parameters provide valuable insights into device suitability for specific clinical and monitoring scenarios. As research continues to advance, wearable biosensors are expected to play an expanding role in personalized healthcare, preventive medicine, and real-time health analytics. Their continued development reflects the broader convergence of biomedical engineering, materials science, data analytics, and clinical practice, positioning wearable biosensors as a cornerstone of next-generation healthcare technologies.


Non-wearable biosensors

Non-wearable biosensors have introduced a substantial transformation in healthcare by strengthening the integration between engineering principles and biological sciences. These technologies have become essential tools for monitoring critical physiological parameters, offering rapid, reliable, and user-friendly solutions that support both clinical decision-making and self-care practices [132,133]. Their impact is particularly evident in the management of chronic diseases and in preventive healthcare, where frequent and accurate measurements are required to guide timely interventions. Blood glucose monitoring systems represent one of the most established applications of non-wearable biosensors. Devices developed by manufacturers such as OneTouch and Accu-Chek enable individuals with diabetes to measure glucose levels regularly and accurately, thereby supporting effective glycemic control and reducing the risk of long-term complications. The widespread availability of these devices has improved patient autonomy and adherence to treatment regimens. Similarly, blood pressure monitoring devices produced by companies such as Omron and Welch Allyn have reshaped cardiovascular health management by allowing home-based blood pressure assessment. This capability has facilitated early detection of hypertension and improved long-term blood pressure control through continuous monitoring outside traditional clinical environments [134,135]. Pulse oximeters are another prominent category of non-wearable biosensors that provide noninvasive measurement of arterial oxygen saturation and pulse rate. Devices manufactured by companies such as Nonin and Contec play a critical role in evaluating respiratory and circulatory function, particularly in emergency care, anesthesia monitoring, and the management of respiratory diseases [136]. Their clinical relevance became especially apparent during global respiratory health crises, where rapid assessment of oxygenation status was essential for triage and treatment decisions.

Temperature monitoring through digital thermometers remains a fundamental component of health assessment. Modern digital thermometers developed by companies such as Braun and iProven deliver fast and accurate body temperature measurements, supporting the diagnosis and monitoring of fever and infectious conditions [137]. Beyond individual health monitoring, non-wearable biosensors have also contributed to public safety and behavioral regulation. Breathalyzers produced by manufacturers such as BACtrack and AlcoHAWK analyze exhaled breath to estimate blood alcohol concentration, promoting responsible alcohol consumption and supporting law enforcement and workplace safety initiatives. Emerging technologies such as lab-on-a-chip biosensors represent a significant step toward miniaturized and integrated diagnostic platforms. Although many of these systems are still under development, they demonstrate the potential to combine complex laboratory functions, including sample preparation, biochemical reactions, and signal detection, within compact devices [138]. This approach promises to revolutionize diagnostics by enabling rapid, point-of-care testing and supporting personalized treatment strategies. Collectively, non-wearable biosensors illustrate the powerful synergy

between engineering innovation and biomedical science, contributing to a healthcare ecosystem that emphasizes accessibility, early intervention, and personalized care [139].

Fig. 2: Bioscience and Bioengineering.

Biochip

Biochip technology represents a highly interdisciplinary domain of microanalysis that integrates computer science, physics, chemistry, molecular biology, microelectronics, and micromechanics [140]. Biochips function through a sequence of interconnected processes that include biochip preparation, biomolecular reaction, and signal detection and analysis [141]. During preparation, a large number of biological macromolecules such as nucleic acids, proteins, tissue sections, and even cells are immobilized on solid substrates to form dense two-dimensional arrays. Techniques such as photoconductive in situ synthesis and microdot deposition are commonly used to achieve precise spatial arrangement of these biological elements. Following immobilization, labeled target molecules interact with the biological samples on the chip surface through specific molecular recognition mechanisms. The resulting interactions generate signals that are detected and quantified using specialized scanning instruments. These signals are then processed computationally to construct biological models that support accurate sample identification and analysis. Biochips can be classified into several categories, including gene chips, protein chips, cell chips, tissue chips, and organ-like chips, reflecting their diverse analytical applications [29].

Gene chips

Gene chips, also known as DNA chips, operate based on the principle of complementary base pairing between nucleic acid sequences. They consist of arrays of DNA oligonucleotide probes designed to detect genetic variations or expression levels in biological samples [142]. Using advanced optoelectronic, microelectronic, and information technologies, DNA probes are precisely deposited onto solid surfaces to form microarrays. When fluorescently labeled sample nucleic acids hybridize with these probes, distinct signal patterns emerge that correspond to specific genetic information [143]. Gene chips enable the simultaneous analysis of thousands of genes, providing high-throughput data that support applications such as single nucleotide polymorphism analysis, microRNA profiling, gene expression studies, and DNA methylation analysis [144]. These tools occupy a central position in genomics research, allowing comprehensive examination of gene activity under different biological conditions [145]. In disease research, gene chips facilitate comparison between healthy and diseased tissues, revealing genes associated with disease onset and progression and identifying potential therapeutic targets [143]. In oncology, they have been instrumental in identifying dysregulated genes in cancer cells and supporting biomarker discovery for diagnosis and prognosis [146]. Gene chips also play a critical role in pharmacogenomics by analyzing genetic variations that influence individual responses to medications, thereby supporting the development of personalized medicine. Beyond disease-focused applications, gene chips contribute to functional genomics by elucidating gene function and regulatory mechanisms. Their diagnostic potential further extends to early disease detection through

the identification of characteristic gene expression signatures. Overall, gene chips significantly advance understanding of genomic structure and function, with profound implications for healthcare, biomedical research, and therapeutic innovation [147].

Protein chips

Protein chips consist of microarrays in which antigens, antibodies, or other functional proteins are immobilized on defined support media, forming an organized and addressable array [149]. The precise spatial arrangement and molecular composition of these immobilized elements are known in advance, allowing labeled target antigens or antibodies to interact selectively with corresponding probes on the chip surface. These interactions are subsequently detected and quantified using specialized scanning instruments. Similar to gene chips, protein chips rely on the fixation of biomolecules onto a solid-phase substrate, where they undergo specific binding reactions analogous to hybridization processes. Automated analytical systems then process the resulting signals to generate quantitative and qualitative data. Protein chips represent a central technology in modern proteomics, enabling the simultaneous analysis of multiple proteins within a single biological sample. Unlike gene-based platforms that focus on nucleic acid information, protein chips directly interrogate functional biomolecules, offering insights that are closer to actual biological activity. Their primary applications include the investigation of post-translational modifications, quantification of protein expression levels, and characterization of protein-protein interactions [150]. These capabilities allow researchers to examine cellular processes at a functional level, capturing regulatory mechanisms that cannot be inferred solely from genomic or transcriptomic data. Through high-throughput analysis, protein chips facilitate comprehensive exploration of complex biological networks. They enable systematic mapping of interaction pathways that underlie cellular signaling, metabolism, and regulatory control. In disease research, protein chips support the identification of disease-specific biomarkers by revealing abnormal protein expression patterns associated with pathological conditions. Such information is valuable for improving diagnostic accuracy and for stratifying diseases based on molecular profiles. Protein chips also contribute significantly to therapeutic development by identifying potential drug targets and assessing how candidate compounds influence protein interactions and signaling cascades. Their adaptability, combined with scalability and analytical depth, makes protein chips indispensable tools for advancing understanding of the proteome and its role in health, disease progression, and pharmacological response [151].

Cell chips

Within the broader biochip landscape, cell chips primarily refer to microarray-based and microfluidic-based platforms designed for the controlled study of living cells. Microarray cell chips utilize intact cells as immobilized biological entities, extending the foundational concepts applied in gene and protein chips. These platforms are widely used for high-throughput drug screening, assessment of cellular gene expression, and evaluation of cellular responses to chemical and biological stimuli. In contrast, microfluidic cell chips integrate sensing and detection technologies with micromachining approaches to examine intracellular components, metabolic activity, and electrophysiological properties at high resolution. While microarray cell chips excel in throughput and parallel analysis, microfluidic cell chips enhance detection efficiency by enabling simultaneous measurement of multiple cellular parameters within confined microenvironments [152]. Cell chips represent a major advancement in bioengineering by providing platforms that support precise cultivation, manipulation, and observation of living cells under controlled conditions [153]. These systems typically consist of microscale chambers, channels, or wells that regulate nutrient delivery, waste removal, mechanical forces, and chemical gradients. Such control allows researchers to replicate key aspects of *in vivo* environments, enabling detailed investigation of how cells respond to drugs, biomolecules, and environmental factors [154]. By simulating physiological conditions, cell chips bridge the gap between traditional cell culture methods and whole-organism studies.

In drug discovery and development, cell chips play a critical role by enabling rapid screening of candidate compounds, evaluation of cytotoxicity, and analysis of therapeutic efficacy across different cell types. These platforms reduce reliance on animal models during early-stage testing and provide more relevant human-cell-based data. Cell chips also support studies in stem cell biology by enabling controlled differentiation, proliferation, and functional assessment, thereby advancing regenerative medicine research. The ability to systematically examine cellular behavior in defined

microenvironments enhances understanding of disease mechanisms, cellular signaling pathways, and intercellular interactions, contributing to the development of personalized therapeutic strategies [155]. Engineering advances in biomedical sensors and monitoring technologies have further expanded the impact of cell-based systems through integration with remote patient monitoring solutions. By combining multiple sensors, including blood pressure, temperature, and electrocardiogram monitors, engineers have developed comprehensive monitoring systems capable of continuous data acquisition independent of patient location. These integrated platforms provide real-time insights into critical physiological parameters, enabling healthcare professionals to monitor patients remotely and respond promptly to emerging clinical changes. Such systems support a wide range of applications, including chronic disease management, postoperative follow-up, and post-hospitalization care. The collaboration between engineering disciplines and healthcare has fundamentally transformed patient monitoring by enabling continuous, personalized care beyond traditional clinical settings. Remote monitoring technologies enhance early intervention, improve clinical decision-making, and reduce healthcare system burden by facilitating proactive management strategies. Through these innovations, the convergence of engineering and biomedical sciences continues to redefine healthcare delivery, emphasizing accessibility, precision, and patient-centered care in modern medical practice [157].

Drug Delivery Systems:

Drug delivery systems represent an essential interface between biomedical engineering and pharmaceutical sciences, as they directly determine how therapeutic agents reach their intended biological targets. The term drug delivery systems refers to the technologies and strategies used to transport medications into the body and across biological barriers to achieve a therapeutic effect. These systems include both the route of administration, such as oral tablets, injectables, or inhalable formulations, and the structural design used to protect and transport the drug, including micelles, nanoparticles, and other carrier platforms that prevent premature degradation and ensure delivery to the desired site of action [158]. Over recent decades, drug delivery has undergone significant transformation, driven largely by advances in biomedical engineering and materials science. Engineers have contributed to identifying physiological barriers that limit drug effectiveness and to developing innovative delivery platforms that are now integrated into clinical practice [159]. Despite these advances, many therapies continue to cause substantial adverse effects due to nonspecific distribution throughout the body. When drugs interact with healthy tissues or organs, unintended toxicity can arise, complicating the treatment of conditions such as cancer, neurological diseases, and infectious disorders. Continued progress in drug delivery aims to address these limitations by improving targeting accuracy and minimizing systemic exposure. Effective drug delivery strategies can enhance therapeutic efficacy, improve patient adherence, and reduce side effects, including those associated with ocular and localized pharmaceutical treatments [160]. These improvements are particularly relevant for chronic conditions that require long-term medication use.

Historically, drug delivery systems have played a central role in the management of a wide range of diseases. All pharmacological therapies depend on active compounds that exert biological effects once they reach specific sites within the body [161]. Some drugs are administered as inactive precursors that must undergo metabolic conversion to become active, making the delivery route a critical determinant of therapeutic success. Conventional drug delivery systems relied on oral, nasal, inhalational, sublingual, or injectable administration. While these approaches remain widely used, they often suffer from major limitations, including nonspecific distribution, rapid clearance, low bioavailability, and delayed onset of action [162]. Enzymatic degradation, pH instability, mucosal barriers, off-target effects, and uncontrolled release profiles further reduced their clinical effectiveness and increased toxicity risks. These challenges led to the development of controlled and modified drug delivery systems designed to regulate the rate, timing, and location of drug release. Modern delivery platforms employ advanced engineering strategies to release drugs in a controlled manner at diseased sites, thereby maximizing therapeutic benefit while minimizing harm to healthy tissues. Techniques such as hydrogels, matrix-based systems, osmotic pumps, degradable and erodible materials, and reservoir-based designs have been developed to achieve targeted delivery at the level of organs, tissues, or even individual cells [163]. Although these systems improved drug availability and targeting compared to conventional approaches, they also introduced new challenges related to limited distribution efficiency,

poor solubility, drug aggregation, and insufficient selectivity. In addition, drug development remains one of the most expensive and time-intensive processes in healthcare innovation [164].

Nanotechnology has introduced a new generation of advanced drug delivery platforms, commonly referred to as nanocarriers. These include dendrimers, liposomes, peptide-based nanoparticles, carbon nanotubes, quantum dots, polymeric nanoparticles, inorganic vectors, lipid-based systems, hybrid nanoparticles, and metal-based nanoparticles [165]. Nanocarriers have expanded the scope of targeted therapy by enabling improved solubility, controlled degradation, enhanced clearance profiles, and precise targeting capabilities. Their physicochemical properties allow drugs to be delivered more efficiently, support combined therapeutic and diagnostic applications, and facilitate combination therapies within a single platform [166]. In oncology, for example, nanoparticle-based systems aim to selectively destroy malignant cells while sparing healthy tissue, although complete specificity remains an ongoing challenge. Protein-based delivery platforms have also gained attention as versatile and biocompatible carriers. A wide range of protein-based structures, including protein cages, nanoparticles, hydrogels, films, microspheres, rods, and pellets, have been engineered for drug transport. Proteins such as ferritin cages, small heat shock protein assemblies, plant-derived viral capsids, albumin, collagen, gelatin-embedded proteins, and dietary proteins like soy and whey possess intrinsic drug-binding and transport capabilities [167]. These systems highlight the growing convergence of biomedical engineering and pharmaceutical science, reinforcing the central role of drug delivery systems in advancing safe, effective, and personalized medical therapies.

Conclusion:

The integration of biomedical engineering with pharmaceutical sciences has fundamentally reshaped modern healthcare, driving advancements in diagnostics, monitoring, and therapeutic delivery. This review outlined how engineering innovations—particularly in medical imaging, biosensor technologies, biochips, and drug-delivery systems—collectively enhance clinical precision and patient outcomes. Enhanced imaging modalities supported by artificial intelligence now enable faster, more accurate interpretation of complex medical data, improving early disease detection and treatment planning. Biosensors, including wearable and non-wearable systems, have expanded the capacity for continuous physiological monitoring, supporting chronic disease management and facilitating remote healthcare delivery. Similarly, biochip technologies such as gene, protein, and cell chips provide high-throughput analytical platforms essential for personalized medicine, genomic profiling, and drug discovery. Advances in drug-delivery systems, especially nanotechnology-enabled platforms, offer targeted, controlled release of therapeutic agents, reducing systemic toxicity and improving treatment efficacy. Collectively, these innovations highlight a shift toward precision, personalization, and proactive care. The convergence of engineering and biomedical sciences continues to accelerate the development of intelligent healthcare solutions, promising improved diagnostic accuracy, optimized therapeutic interventions, and enhanced long-term patient outcomes.

References:

1. Thimbleby H. Technology and the future of healthcare. *J Public Health Res.* 2013;2(3):e28. doi: 10.4081/jphr.2013.e28
2. Javaid M, Haleem A, Singh RP, et al. Sustaining the healthcare systems through the conceptual of biomedical engineering: a study with recent and future potentials. *Biomed Technol.* 2023;1:39–49. doi: 10.1016/j.bmt.2022.11.004
3. Miller MI, Brightman AO, Epstein FH, et al. BME 2.0: engineering the future of medicine. *BME Front.* 2023;4:0001. doi: 10.34133/bmef.0001
4. Haleem A, Javaid M, Pratap Singh R, et al. Medical 4.0 technologies for healthcare: features, capabilities, and applications. *Internet Things Cyber-Phys Syst.* 2022;2:12–30. doi: 10.1016/j.iotcps.2022.04.001
5. Haleem A, Javaid M, Singh RP, et al. Telemedicine for healthcare: capabilities, features, barriers, and applications. *Sens Int.* 2021;2:100117. doi: 10.1016/j.sintl.2021.10011
6. Chan S-H, Lee S-Y, Fang Q, et al. Integration of bioelectronics and bioinformatics: future direction of bioengineering research. *J Med Biol Eng.* 2016;36(6):751–754. doi: 10.1007/s40846-016-0185-1

7. Laal M. Innovation process in medical imaging. *Procedia - Soc Behav Sci.* 2013;81:60–64. doi: 10.1016/j.sbspro.2013.06.388
8. Kasban H. A comparative study of medical imaging techniques. *Int J Inf Sci Intell Syst.* 2015;4:37–58.
9. Hussain S, Mubeen I, Ullah N, et al. Modern diagnostic imaging technique applications and risk factors in the medical field: a review. *Biomed Res Int.* 2022;2022:1–19. doi: 10.1155/2022/5164970
10. Yu L, Liu X, Leng S, et al. Radiation dose reduction in computed tomography: techniques and future perspective. *Imag Med.* 2009;1(1):65–84. doi: 10.2217/iim.09.5
11. Tang X. The role of artificial intelligence in medical imaging research. *BJR Open.* 2019;2(1):20190031. doi: 10.1259/bjro.20190031
12. Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology. *Nat Rev Cancer.* 2018;18(8):500–510. doi: 10.1038/s41568-018-0016-5
13. Barragán-Montero A, Javaid U, Valdés G, et al. Artificial intelligence and machine learning for medical imaging: a technology review. *Phys Medica PM Int J Devoted Appl Phys Med Biol Off J Ital Assoc Biomed Phys AIFB.* 2021;83:242–256. doi: 10.1016/j.ejmp.2021.04.016
14. Rambo S. Improving medical image processing with AI. *Semicond. Eng.* 2021. Available from: <https://semiengineering.com/improving-medical-image-processing-with-ai>(open in a new window)
15. Sharma N, Aggarwal LM. Automated medical image segmentation techniques. *J Med Phys Assoc Med Phys India.* 2010;35(1):3–14. doi: 10.4103/0971-6203.58777
16. Riksen JJM, Nikolaev AV, Soest GV. Photoacoustic imaging on its way toward clinical utility: a tutorial review focusing on practical application in medicine - PMC.
17. Upputuri PK, Pramanik M. Fast photoacoustic imaging systems using pulsed laser diodes: a review. *Biomed Eng Lett.* 2018;8(2):167–181. doi: 10.1007/s13534-018-0060-9
18. Xia J, Yao J, Wang LV. Photoacoustic tomography: principles and advances. *Electromagn Waves Camb Mass.* 2014;147:1–22. doi: 10.2528/PIER14032303
19. Phelps ME. Positron emission tomography provides molecular imaging of biological processes. *Proc Natl Acad Sci USA.* 2000;97(16):9226–9233. doi: 10.1073/pnas.97.16.9226
20. Tsang VTC, Li X, Wong TTW. A review of endogenous and exogenous contrast agents used in photoacoustic tomography with different sensing configurations. *Sensors.* 2020;20(19):5595. doi: 10.3390/s20195595
21. Yao J, Xia J, Wang LV. Multi-scale functional and molecular photoacoustic tomography. *Ultrason Imaging.* 2016;38(1):44–62. doi: 10.1177/0161734615584312
22. Luke GP, Yeager D, Emelianov SY. Biomedical applications of photoacoustic imaging with exogenous contrast agents. *Ann Biomed Eng.* 2012;40(2):422–437. doi: 10.1007/s10439-011-0449-4
23. Echavidre W, Picco V, Faraggi M, et al. Integrin- α v β 3 as a therapeutic target in glioblastoma: back to the future? *Pharmaceutics.* 2022;14(5):1053. doi: 10.3390/pharmaceutics14051053
24. Kircher MF, de la Zerda A, Jokerst JV, et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-Photoacoustic-Raman Nanoparticle. *Nat Med.* 2012;18(5):829–834. doi: 10.1038/nm.2721
25. Singh GD, Singh M. Virtual surgical planning: modeling from the present to the future. *J Clin Med.* 2021;10(23):5655. doi: 10.3390/jcm10235655
26. Sensale M, Vendevre T, Schilling C, et al. Patient-specific finite element models of posterior pedicle screw fixation: effect of screw's size and geometry. *Front Bioeng Biotechnol.* 2021;9. doi: 10.3389/fbioe.2021.643154
27. Docquier N, Candel S. Combustion control and sensors: a review. *Prog Energy Combust Sci.* 2002;28(2):107–150. doi: 10.1016/S0360-1285(01)00009-0
28. Kassal P, Steinberg MD, Steinberg IM. Wireless chemical sensors and biosensors: a review. *Sens Actuators B Chem.* 2018;266:228–245. doi: 10.1016/j.snb.2018.03.074
29. Wan H, Zhuang L, Pan Y, et al. Biomedical sensors. In: Feng DD, editor. *Biomedical information technology [Internet].* China: Elsevier; 2020. p. 51–79.
30. Majumder S, Mondal T, Deen MJ. Wearable sensors for remote health monitoring. *Sensors.* 2017;17(1):130. doi: 10.3390/s17010130

31. Khaliq N, Rasheed MA, Khan M, et al. Voltage-switchable biosensor with gold nanoparticles on TiO₂ nanotubes decorated with CdS quantum dots for the detection of cholesterol and H₂O₂. *ACS Appl Mater Interfaces*. 2021;13(3):3653–3668. doi: 10.1021/acsami.0c19979
32. Jandas PJ, Luo J, Prabakaran K, et al. Highly stable, love-mode surface acoustic wave biosensor using Au nanoparticle-MoS₂-rGO nano-cluster doped polyimide nanocomposite for the selective detection of carcinoembryonic antigen. *Mater Chem Phys*. 2020;246:122800. doi: 10.1016/j.matchemphys.2020.122800
33. Kasturi S, Eom Y, Torati SR, et al. Highly sensitive electrochemical biosensor based on naturally reduced rGO/Au nanocomposite for the detection of miRNA-122 biomarker. *J Ind Eng Chem*. 2021;93:186–195. doi: 10.1016/j.jiec.2020.09.022
34. Basiri S, Mehdinia A, Jabbari A. A sensitive triple colorimetric sensor based on plasmonic response quenching of green synthesized silver nanoparticles for determination of Fe²⁺, hydrogen peroxide, and glucose. *Colloids Surf Physicochem Eng Asp*. 2018;545:138–146. doi: 10.1016/j.colsurfa.2018.02.053
35. Wang H, Zhang Y, Li H, et al. A silver–palladium alloy nanoparticle-based electrochemical biosensor for simultaneous detection of ractopamine, clenbuterol and salbutamol. *Biosens Bioelectron*. 2013;49:14–19. doi: 10.1016/j.bios.2013.04.041
36. Han G, Cai J, Liu C, et al. Highly sensitive electrochemical sensor based on xylan-based Ag@CQDs-rGO nanocomposite for dopamine detection. *Appl Surf Sci*. 2021;541:148566. doi: 10.1016/j.apsusc.2020.148566
37. Chen L, Xie H, Li J. Electrochemical glucose biosensor based on silver nanoparticles/multiwalled carbon nanotubes modified electrode. *J Solid State Electrochem*. 2012;16(10):3323–3329. doi: 10.1007/s10008-012-1773-9
38. Brondani D, Scheeren CW, Dupont J, et al. Biosensor based on platinum nanoparticles dispersed in ionic liquid and laccase for determination of adrenaline. *Sens Actuators B Chem*. 2009;140(1):252–259. doi: 10.1016/j.snb.2009.04.037
39. Yang Q, Li N, Li Q, et al. Amperometric sarcosine biosensor based on hollow magnetic Pt–Fe₃O₄@C nanospheres. *Anal Chim Acta*. 2019;1078:161–167. doi: 10.1016/j.aca.2019.06.031
40. Fu C, Sun Y, Huang C, et al. Ultrasensitive sandwich-like electrochemical biosensor based on core-shell Pt@CeO₂ as signal tags and double molecular recognition for cerebral dopamine detection. *Talanta*. 2021;223:121719. doi: 10.1016/j.talanta.2020.121719
41. Zhu T, Wang X, Chang W, et al. Green fabrication of Cu/rGO decorated SWCNT buckypaper as a flexible electrode for glucose detection. *Mater Sci Eng C*. 2021;120:111757. doi: 10.1016/j.msec.2020.111757
42. Wang B, Luo Y, Gao L, et al. High-performance field-effect transistor glucose biosensors based on bimetallic Ni/Cu metal-organic frameworks. *Biosens Bioelectron*. 2021;171:112736. doi: 10.1016/j.bios.2020.112736
43. Kailasa S, Rani BG, Bhargava Reddy MS, et al. NiO nanoparticles-decorated conductive polyaniline nanosheets for amperometric glucose biosensor. *Mater Chem Phys*. 2020;242:122524. doi: 10.1016/j.matchemphys.2019.122524
44. Zhao J, Fu C, Huang C, et al. Co₃O₄-au polyhedron mimic peroxidase- and cascade enzyme-assisted cycling process-based photoelectrochemical biosensor for monitoring of miRNA-141. *Chem Eng J*. 2021;406:126892. doi: 10.1016/j.cej.2020.126892
45. Verma S, Arya P, Singh A, et al. ZnO-rGO nanocomposite based bioelectrode for sensitive and ultrafast detection of dopamine in human serum. *Biosens Bioelectron*. 2020;165:112347. doi: 10.1016/j.bios.2020.112347
46. Akhtar N, Metkar SK, Girigoswami A, et al. ZnO nanoflower based sensitive nano-biosensor for amyloid detection. *Mater Sci Eng C*. 2017;78:960–968. doi: 10.1016/j.msec.2017.04.118
47. Lavanya N, Radhakrishnan S, Sekar C, et al. Fabrication of Cr doped SnO₂ nanoparticles based biosensor for the selective determination of riboflavin in pharmaceuticals. *Analyst*. 2013;138(7):2061. doi: 10.1039/c3an36754a
48. Ognjanović M, Stanković V, Knežević S, et al. TiO₂/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor. *Microchem J*. 2020;158:105150. doi: 10.1016/j.microc.2020.105150

49. Augustine S, Kumar P, Malhotra BD. Amine-functionalized MoO₃ @RGO nanohybrid-based biosensor for breast cancer detection. *ACS Appl Bio Mater.* 2019;2(12):5366–5378. doi: 10.1021/acsabm.9b00659
50. Kalkal A, Pradhan R, Kadian S, et al. Biofunctionalized graphene quantum dots based fluorescent biosensor toward efficient detection of small cell lung cancer. *ACS Appl Bio Mater.* 2020;3(8):4922–4932. doi: 10.1021/acsabm.0c00427
51. Cui F, Ji J, Sun J, et al. A novel magnetic fluorescent biosensor based on graphene quantum dots for rapid, efficient, and sensitive separation and detection of circulating tumor cells. *Anal Bioanal Chem.* 2019;411(5):985–995. doi: 10.1007/s00216-018-1501-0
52. Liu Y, Chen X, Ma Q. A novel amplified electrochemiluminescence biosensor based on Au NPs@PDA@CuInZnS QDs nanocomposites for ultrasensitive detection of p53 gene. *Biosens Bioelectron.* 2018;117:240–245. doi: 10.1016/j.bios.2018.06.023
53. M NMN, Hashim U, Md Arshad MK, et al. Electrical detection of dengue virus (DENV) DNA oligomer using silicon nanowire biosensor with novel molecular gate control. *Biosens Bioelectron.* 2016;83:106–114. doi: 10.1016/j.bios.2016.04.033
54. Huang H, Bai W, Dong C, et al. An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papillomavirus DNA detection. *Biosens Bioelectron.* 2015;68:442–446. doi: 10.1016/j.bios.2015.01.039
55. Çakıroğlu B, Özcar M. A self-powered photoelectrochemical glucose biosensor based on supercapacitor Co₃O₄-cnt hybrid on TiO₂. *Biosens Bioelectron.* 2018;119:34–41. doi: 10.1016/j.bios.2018.07.049
56. Li W, Gao Y, Zhang J, et al. Universal DNA detection realized by peptide based carbon nanotube biosensors. *Nanoscale Adv.* 2020;2(2):717–723. doi: 10.1039/C9NA00625G
57. Huang Q, Lin X, Tong L, et al. Graphene quantum dots/multiwalled carbon nanotubes composite-based electrochemical sensor for detecting dopamine release from living cells. *ACS Sustain Chem Eng.* 2020;8(3):1644–1650. doi: 10.1021/acssuschemeng.9b06623
58. Mustapha Kamil Y, Sh A-R, Yaacob MH, et al. Detection of dengue using PAMAM dendrimer integrated tapered optical fiber sensor. *Sci Rep.* 2019;9(1):13483. doi: 10.1038/s41598-019-49891-7
59. Omar NAS, Fen YW, Abdullah J, et al. Sensitive detection of dengue virus type 2 E-Proteins signals using self-assembled monolayers/reduced graphene oxide-pamam dendrimer thin film-spr optical sensor. *Sci Rep.* 2020;10(1):2374. doi: 10.1038/s41598-020-59388-3
60. Khan S, Hossain MK. 2 - classification and properties of nanoparticles. In: Mavinkere Rangappa S, Parameswaranpillai J, Yashas Gowda T, editors. *Nanoparticle-based polymer composites* [Internet]. Thailand: Woodhead Publishing; 2022. p. 15–54.
61. Kumar P, Pradhan A. Human saliva as a substitute diagnostic medium for the detection of oral lesions using the stokes shift spectroscopy: discrimination among the groups by multivariate analysis methods. *Asian Pac J Cancer Prev APJCP.* 2023;24(11):3757–3763. doi: 10.31557/APJCP.2023.24.11.3757
62. Koushki E. Effect of conjugation with organic molecules on the surface plasmon resonance of gold nanoparticles and application in optical biosensing. *RSC Adv.* 2021;11(38):23390–23399. doi: 10.1039/D1RA01842F
63. Malekzad H, Zangabad PS, Mirshekari H, et al. Noble metal nanoparticles in biosensors: recent studies and applications. *Nanotechnol Rev.* 2017;6(3):301–329. doi: 10.1515/ntrev-2016-0014
64. Jiang P, Wang Y, Zhao L, et al. Applications of gold nanoparticles in non-optical biosensors. *Nanomater.* 2018;8(12):977. doi: 10.3390/nano8120977
65. Shi W, Li K, Zhang Y. The advancement of nanomaterials for the detection of hepatitis B virus and hepatitis C virus. *Molecules.* 2023;28(20):7201. doi: 10.3390/molecules28207201
66. Majdinasab M, Mishra RK, Tang X, et al. Detection of antibiotics in food: new achievements in the development of biosensors. *TrAC Trends Anal Chem.* 2020;127:115883. doi: 10.1016/j.trac.2020.115883
67. Prajapati S, Padhan B, Amulyasai B, et al. Chapter 11 - Nanotechnology-based sensors. In: Pal K, Banerjee I, and Sarkar P, editors. *Biopolymer-based formulation* [Internet]. India: Elsevier; 2020. p. 237–262.

68. Huang J, Liu J, Wang J. Optical properties of biomass-derived nanomaterials for sensing, catalytic, biomedical and environmental applications. *TrAC Trends Anal Chem.* 2020;124:115800. doi: 10.1016/j.trac.2019.115800
69. Azharuddin M, Zhu GH, Das D, et al. A repertoire of biomedical applications of noble metal nanoparticles. *Chem Commun.* 2019;55(49):6964–6996. doi: 10.1039/C9CC01741K
70. Sohrabi H, Kholafazad Kordasht H, Pashazadeh-Panahi P, et al. Recent advances of electrochemical and optical biosensors for detection of C-reactive protein as a major inflammatory biomarker. *Microchem J.* 2020;158:105287. doi: 10.1016/j.microc.2020.105287
71. Hu J, Liu S. Responsive polymers for detection and sensing applications: current status and future developments. *Macromolecules.* 2010;43(20):8315–8330. doi: 10.1021/ma1005815
72. Wang Z, Ma Z, Sun J, et al. Recent advances in natural functional biopolymers and their applications of electronic skins and flexible strain sensors. *Polymers.* 2021;13(5):813. doi: 10.3390/polym13050813
73. Pantelopoulos A, Bourbakis NG. A survey on wearable sensor-based systems for health monitoring and prognosis. *IEEE Trans Syst Man Cybern Part C Appl Rev.* 2010;40(1):1–12. doi: 10.1109/TSMCC.2009.2032660
74. Manjarres J, Narvaez P, Gasser K, et al. Physical workload tracking using human activity recognition with wearable devices. *Sensors.* 2019;20(1):39. doi: 10.3390/s20010039
75. Meena JS, Choi SB, Jung S-B, et al. Electronic textiles: new age of wearable technology for healthcare and fitness solutions. *Mater Today Bio.* 2023;19:100565. doi: 10.1016/j.mtbi.2023.100565
76. Nasiri S, Khosravani MR. Progress and challenges in fabrication of wearable sensors for health monitoring. *Sens Actuators Phys.* 2020;312:112105. doi: 10.1016/j.
77. Pramanik PKD, Upadhyaya BK, Pal S, et al. Chapter 1 - internet of things, smart sensors, and pervasive systems: enabling connected and pervasive healthcare. In: Dey N, Ashour A, and Bhatt C, editors. *Health data analysis management.* India: Academic Press; 2019. p. 1–58.
78. Wang L, Lou Z, Jiang K, et al. Bio-multifunctional smart wearable sensors for medical devices. *Adv Intell Syst.* 2019;1(5):1900040. doi: 10.1002/aisy.201900040
79. Villena Gonzales W, Mobashsher AT, Abbosh A. The progress of glucose monitoring—a review of invasive to minimally and non-invasive techniques, devices and sensors. *Sensors.* 2019;19(4):800. doi: 10.3390/s19040800
80. Wu Y, Ma Y, Zheng H, et al. Piezoelectric materials for flexible and wearable electronics: a review. *Mater Des.* 2021;211:110164. doi: 10.1016/j.matdes.2021.110164
81. Yang T, Xie D, Li Z, et al. Recent advances in wearable tactile sensors: materials, sensing mechanisms, and device performance. *Mater Sci Eng R Rep.* 2017;115:1–37. doi: 10.1016/j.mser.2017.02.001
82. Anwer AH, Khan N, Ansari MZ, et al. Recent advances in touch sensors for flexible wearable devices. *Sensors.* 2022;22(12):4460. doi: 10.3390/s22124460
83. Kim J, Imani S, de Araujo WR, et al. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. *Biosens Bioelectron.* 2015;74:1061–1068. doi: 10.1016/j.bios.2015.07.039
84. Gao W, Emaminejad S, Nyein HYY, et al. Fully integrated wearable sensor arrays for multiplexed *in situ* perspiration analysis. *Nature.* 2016;529(7587):509–514. doi: 10.1038/nature16521
85. Elsherif M, Hassan MU, Yetisen AK, et al. Wearable contact lens biosensors for continuous glucose monitoring using smartphones. *ACS Nano.* 2018;12(6):5452–5462. doi: 10.1021/acsnano.8b00829
86. Zaryanov NV, Nikitina VN, Karpova EV, et al. Nonenzymatic sensor for lactate detection in human sweat. *Anal Chem.* 2017;89(21):11198–11202. doi: 10.1021/acs.analchem.7b03662
87. Zhou F, Zhao H, Chen K, et al. Flexible electrochemical sensor with Fe/Co bimetallic oxides for sensitive analysis of glucose in human tears. *Anal Chim Acta.* 2023;1243:340781. doi: 10.1016/j.aca.2023.340781
88. Jagannath B, Lin K, Pali M, et al. Temporal profiling of cytokines in passively expressed sweat for detection of infection using wearable device. *Bioeng Transl Med.* 2021;6(3):e10220. doi: 10.1002/btm2.10220
89. Gao B, He Z, He B, et al. Wearable eye health monitoring sensors based on peacock tail-inspired inverse opal carbon. *Sens Actuators B Chem.* 2019;288:734–741. doi: 10.1016/j.snb.2019.03.029

90. Lipani L, Dupont BGR, Doungmene F, et al. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. *Nat Nanotechnol.* 2018;13(6):504–511. doi: 10.1038/s41565-018-0112-4
91. Arakawa T, Tomoto K, Nitta H, et al. A wearable cellulose acetate-coated mouthguard biosensor for in vivo salivary glucose measurement. *Anal Chem.* 2020;92(18):12201–12207. doi: 10.1021/acs.analchem.0c01201
92. Nan M, Darmawan BA, Go G, et al. Wearable localized surface plasmon resonance-based biosensor with highly sensitive and direct detection of cortisol in human sweat. *Biosensors (Basel).* 2023;13(2):184. doi: 10.3390/bios13020184
93. Deng M, Song G, Zhong K, et al. Wearable fluorescent contact lenses for monitoring glucose via a smartphone. *Sens Actuators B Chem.* 2022;352:131067. doi: 10.1016/j.snb.2021.131067
94. Sweilam MN, Varcoe JR, Crean C. Fabrication and optimization of fiber-based lithium sensor: a step toward wearable sensors for lithium drug monitoring in interstitial fluid. *ACS Sens.* 2018;3(9):1802–1810. doi: 10.1021/acssensors.8b00528
95. García-Carmona L, Martín A, Sempionatto JR, et al. Pacifier biosensor: toward noninvasive saliva biomarker monitoring. *Anal Chem.* 2019;91(21):13883–13891. doi: 10.1021/acs.analchem.9b03379
96. Dervisevic M, Dervisevic E, Esser L, et al. Wearable microneedle array-based sensor for transdermal monitoring of pH levels in interstitial fluid. *Biosens Bioelectron.* 2023;222:114955. doi: 10.1016/j.bios.2022.114955
97. Lei L, Zhao C, Zhu X, et al. Nonenzymatic electrochemical sensor for wearable interstitial fluid glucose monitoring. *Electroanalysis.* 2022;34(2):415–422. doi: 10.1002/elan.202060601
98. Xu J, Tao X, Liu X, et al. Wearable eye patch biosensor for noninvasive and simultaneous detection of multiple biomarkers in human tears. *Anal Chem.* 2022;94(24):8659–8667. doi: 10.1021/acs.analchem.2c00614
99. Zheng L, Zhu D, Wang W, et al. A silk-microneedle patch to detect glucose in the interstitial fluid of skin or plant tissue. *Sens Actuators B Chem.* 2022;372:132626. doi: 10.1016/j.snb.2022.132626
100. Gao N, Cai Z, Chang G, et al. Non-invasive and wearable glucose biosensor based on gel electrolyte for detection of human sweat. *J Mater Sci.* 2023;58(2):890–901. doi: 10.1007/s10853-022-08095-7
101. Qiao Y, Du J, Ge R, et al. A sample and detection microneedle patch for psoriasis MicroRNA biomarker analysis in interstitial fluid. *Anal Chem.* 2022;94(14):5538–5545. doi: 10.1021/acs.analchem.1c04401
102. Moreddu R, Wolffsohn JS, Vigolo D, et al. Laser-inscribed contact lens sensors for the detection of analytes in the tear fluid. *Sens Actuators B Chem.* 2020;317:128183. doi: 10.1016/j.snb.2020.128183
103. Huang C, Hao Z, Wang Z, et al. An ultraflexible and transparent graphene-based wearable sensor for biofluid biomarkers detection. *Adv Mater Technol.* 2022;7(6):2101131. doi: 10.1002/admt.202101131
104. Yoon S, Yoon H, Zahed MA, et al. Multifunctional hybrid skin patch for wearable smart healthcare applications. *Biosens Bioelectron.* 2022;196:113685. doi: 10.1016/j.bios.2021.113685
105. Kalasin S, Sangnuang P, Surareungchai W. Lab-on-eyeglasses to monitor kidneys and strengthen vulnerable populations in pandemics: machine learning in predicting serum creatinine using tear creatinine. *Anal Chem.* 2021;93(30):10661–10671. doi: 10.1021/acs.analchem.1c02085
106. He X, Xu T, Gu Z, et al. Flexible and superwettable bands as a platform toward sweat sampling and sensing. *Anal Chem.* 2019;91(7):4296–4300. doi: 10.1021/acs.analchem.8b05875
107. Tehrani F, Teymourian H, Wuerstle B, et al. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. *Nat Biomed Eng.* 2022;6(11):1214–1224. doi: 10.1038/s41551-022-00887-1
108. Parrilla M, Vanhooydonck A, Watts R, et al. Wearable wristband-based electrochemical sensor for the detection of phenylalanine in biofluids. *Biosens Bioelectron.* 2022;197:113764. doi: 10.1016/j.bios.2021.113764
109. Ghoorjian A, Kamalabadi M, Moradi M, et al. Wearable potentiometric sensor based on Na0.44MnO₂ for non-invasive monitoring of sodium ions in sweat. *Anal Chem.* 2022;94(4):2263–2270. doi: 10.1021/acs.analchem.1c04960

110. Keum DH, Kim S-K, Koo J, et al. Wireless smart contact lens for diabetic diagnosis and therapy. *Sci Adv.* 2020;6(17):eaba3252. doi: 10.1126/sciadv.aba3252
111. Bollella P, Sharma S, Cass AEG, et al. Minimally invasive glucose monitoring using a highly porous gold microneedles-based biosensor: characterization and application in artificial interstitial fluid. *Catalysts.* 2019;9(7):580. doi: 10.3390/catal9070580
112. Goud KY, Mahato K, Teymourian H, et al. Wearable electrochemical microneedle sensing platform for real-time continuous interstitial fluid monitoring of apomorphine: toward Parkinson management. *Sens Actuators B Chem.* 2022;354:131234. doi: 10.1016/j.snb.2021.131234
113. Choi D-H, Li Y, Cutting GR, et al. A wearable potentiometric sensor with integrated salt bridge for sweat chloride measurement. *Sens Actuators B Chem.* 2017;250:673–678. doi: 10.1016/j.snb.2017.04.129
114. Mohan AMV, Windmiller JR, Mishra RK, et al. Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays. *Biosens Bioelectron.* 2017;91:574–579. doi: 10.1016/j.bios.2017.01.016
115. Kim J, Kim M, Lee M-S, et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. *Nat Commun.* 2017;8(1):14997. doi: 10.1038/ncomms14997
116. Sempionatto JR, Lin M, Yin L, et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. *Nat Biomed Eng.* 2021;5(7):737–748. doi: 10.1038/s41551-021-00685-1
117. Kumar V, Gill KD. Blood collection and preservation. Basic concepts clin biochem pract guide. Singapore: Springer Singapore; 2018. p. 5–7.
118. Senel M, Dervisevic M, Voelcker NH. Gold microneedles fabricated by casting of gold ink used for urea sensing. *Mater Lett.* 2019;243:50–53. doi: 10.1016/j.matlet.2019.02.014
119. Teymourian H, Moonla C, Tehrani F, et al. Microneedle-based detection of ketone bodies along with glucose and lactate: toward real-time continuous interstitial fluid monitoring of diabetic ketosis and ketoacidosis. *Anal Chem.* 2020;92(2):2291–2300. doi: 10.1021/acs.analchem.9b05109
120. Bariya M, Li L, Ghattamaneni R, et al. Glove-based sensors for multimodal monitoring of natural sweat. *Sci Adv.* 2020;6(35):eabb8308. doi: 10.1126/sciadv.abb8308
121. Yao Y, Chen J, Guo Y, et al. Integration of interstitial fluid extraction and glucose detection in one device for wearable non-invasive blood glucose sensors. *Biosens Bioelectron.* 2021;179:113078. doi: 10.1016/j.bios.2021.113078
122. Ibáñez-Redín G, Cagnani GR, Gomes N, et al. Wearable potentiometric biosensor for analysis of urea in sweat. *Biosens Bioelectron.* 2023;223:114994. doi: 10.1016/j.bios.2022.114994
123. Sempionatto JR, Brazaca LC, García-Carmona L, et al. Eyeglasses-based tear biosensing system: non-invasive detection of alcohol, vitamins and glucose. *Biosens Bioelectron.* 2019;137:161–170. doi: 10.1016/j.bios.2019.04.058
124. Kim J, Valdés-Ramírez G, Bandodkar AJ, et al. Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. *Analyst.* 2014;139(7):1632–1636. doi: 10.1039/C3AN02359A
125. Mei R, Wang Y, Zhao X, et al. Skin interstitial fluid-based SERS tags labeled microneedles for tracking of peritonitis progression and treatment effect. *ACS Sens.* 2023;8(1):372–380. doi: 10.1021/acssensors.2c02409
126. Huang X, Liu Y, Chen K, et al. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. *Small.* 2014;10(15):3083–3090. doi: 10.1002/smll.201400483
127. Busono P, Wijaya JE, Handoyo T, et al. Wearable fabric based-biosensor for ion detection in sweat 2022 int conf radar antenna microw electron telecommun ICRAMET. IEEE; 2022. p. 223–227.
128. Mei R, Wang Y, Shi S, et al. Highly sensitive and reliable internal-standard surface-enhanced raman scattering microneedles for determination of bacterial metabolites as infection biomarkers in skin interstitial fluid. *Anal Chem.* 2022;94(46):16069–16078. doi: 10.1021/acs.analchem.2c03208
129. Cui Y, Duan W, Jin Y, et al. Ratiometric fluorescent nanohybrid for noninvasive and visual monitoring of sweat glucose. *ACS Sens.* 2020;5(7):2096–2105. doi: 10.1021/acssensors.0c00718
130. Park S, Hwang J, Jeon H-J, et al. Cerium oxide nanoparticle-containing colorimetric contact lenses for noninvasively monitoring human tear glucose. *ACS Appl Nano Mater.* 2021;4(5):5198–5210. doi: 10.1021/acsanm.1c00603

131. Kim J, Sempionatto JR, Imani S, et al. Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. *Adv Sci.* 2018;5(10):1800880. doi: 10.1002/advs.201800880
132. Wang J, Wang L, Li G, et al. Ultra-small wearable flexible biosensor for continuous sweat analysis. *ACS Sens.* 2022;7(10):3102–3107. doi: 10.1021/acssensors.2c01533
133. Haleem A, Javaid M, Singh RP, et al. Biosensors applications in medical field: a brief review. *Sens Int.* 2021;2:100100. doi: 10.1016/j.sintl.2021.100100
134. Kumar P. Detection of inaccessible head and neck lesions using human saliva and fluorescence spectroscopy. *Lasers Med Sci.* 2022;37(3):1821–1827. doi: 10.1007/s10103-021-03437-4
135. Fonseca-Reyes S, Cervantes-Munguía R, de Alba-García JG, et al. Evaluation and effects of the omron 725 CIC device for measuring blood pressure in a hypertension clinic. *Blood Press Monit.* 2007;12(5):321. doi: 10.1097/MBP.0b013e32818b29f5
136. Sharma A, Badea M, Tiwari S, et al. Wearable biosensors: an alternative and practical approach in healthcare and disease monitoring. *Molecules.* 2021;26(3):748. doi: 10.3390/molecules26030748
137. Yang C, Liu F, Ye J. A product form design method integrating Kansei engineering and diffusion model. *Adv Eng Inf.* 2023;57:102058. doi: 10.1016/j.aei.2023.102058
138. Kumar P, Rathod S, Pradhan A. Detection of oral mucosal lesions by the fluorescence spectroscopy and classification of cancerous stages by support vector machine. *Lasers Med Sci.* 2024;39(1):42. doi: 10.1007/s10103-024-03995-3
139. Raj SA, Senith S, Sai BK. Digital thermometers: its types, utilities, and global trade prospects for India. *Phys Conf Ser.* 2021;1937(1):012016. doi: 10.1088/1742-6596/1937/1/012016
140. Janagama DG, Tummala RR. Nanobiosensing electronics and nanochemistry for biosensor packaging. In: Wong C, Moon K, Li Y, editors. *Nano-bio- electron photonic MEMS packag.* Cham: Springer International Publishing; 2021. p. 317–348.
141. Weinberger SR, Morris TS, Pawlak M. Recent trends in protein biochip technology. *Pharmacogenomics.* 2000;1(4):395–416. doi: 10.1517/14622416.1.4.395
142. Saadati A, Hassanpour S, de la GM, et al. Recent advances on application of peptide nucleic acids as a bioreceptor in biosensors development. *TrAC Trends Anal Chem.* 2019;114:56–68. doi: 10.1016/j.trac.2019.02.030
143. Bumgarner R. DNA microarrays: types, applications and their future. *CP Mol Biol.* 2013;101(1):Unit–22.1. doi: 10.1002/0471142727.mb2201s101
144. Li CM, Dong H, Zhou Q, et al. Biochips – fundamentals and applications. *Electrochem Sens Biosens Their Biomed Appl* Elsevier. 2008:307–383.
145. Stoughton RB. Applications of DNA microarrays in biology. *Annu Rev Biochem.* 2005;74(1):53–82. doi: 10.1146/annurev.biochem.74.082803.133212
146. Narrandes S, Xu W. Gene expression detection assay for cancer clinical use. *J Cancer.* 2018;9(13):2249–2265. doi: 10.7150/jca.24744
147. Pardatscher G, Schwarz-Schilling M, Daube SS, et al. Gene expression on DNA biochips patterned with strand-displacement lithography. *Angew Chem Int Ed Engl.* 2018;57(17):4783–4786. doi: 10.1002/anie.201800281
148. Li Z, Xu X, Wang D, et al. Recent advancements in nucleic acid detection with microfluidic chip for molecular diagnostics. *TrAC Trends Anal Chem.* 2023;158:116871. doi: 10.1016/j.trac.2022.116871
149. Angenendt P. Progress in protein and antibody microarray technology. *Drug Discov Today.* 2005;10(7):503–511. doi: 10.1016/S1359-6446(05)03392-1
150. Seong S, Choi C. Current status of protein chip development in terms of fabrication and application. *Proteomics.* 2003;3(11):2176–2189. doi: 10.1002/pmic.200300609
151. Sutandy FXR, Qian J, Chen C, et al. Overview of protein microarrays. *Curr Protoc Protein Sci.* 2013;72(1):2711–27116. doi: 10.1002/0471140864.ps2701s72
152. Hosseini M, Hosseini F, Ahmadi A. Chapter 3 - cell-based assays on microfluidic chips. In: Mozafari M, editor. *Principles of Human Organs–Chips.* Canada: Woodhead Publishing; 2023. p. 61–87.
153. El-Ali J, Sorger PK, Jensen KF. Cells on chips. *Nature.* 2006;442(7101):403–411. doi: 10.1038/nature05063

154. Baudoin R, Corlu A, Griscom L, et al. Trends in the development of microfluidic cell biochips for in vitro hepatotoxicity. *Toxicol In Vitro*. 2007;21(4):535–544. doi: 10.1016/j.tiv.2006.11.004
155. Tajeddin A, Mustafaoglu N. Design and fabrication of organ-on-chips: promises and challenges. *Micromachines*. 2021;12(12):1443. doi: 10.3390/mi12121443
156. Primiceri E, Chiriaco MS, Rinaldi R, et al. Cell chips as new tools for cell biology – results, perspectives and opportunities. *Lab Chip*. 2013;13(19):3789–3802. doi: 10.1039/c3lc50550b
157. Haleem A, Javaid M, Singh RP, et al. Medical 4.0 technologies for healthcare: features, capabilities, and applications - ScienceDirect.
158. Ezrahi S, Aserin A, Garti N. Basic principles of drug delivery systems – the case of paclitaxel. *Adv Colloid Interface Sci*. 2019;263:95–130. doi: 10.1016/j.cis.2018.11.004
159. Vora LK, Gholap AD, Jetha K, et al. Artificial intelligence in pharmaceutical technology and drug delivery design. *Pharmaceutics*. 2023;15(7):1916. doi: 10.3390/pharmaceutics15071916
160. Drug Delivery Systems. Natl Inst Biomed Imag Bioeng. 2024. Available from: <https://www.nibib.nih.gov/science-education/science-topics/drug-delivery-systems-getting-drugs-their-targets-controlled-manner> (open in a new window)
161. Jain KK. An overview of drug delivery systems. In: Jain K, editor. *Drug delivery system*. New York (NY): Springer New York; 2020. p. 1–54.
162. Ratnam DV, Ankola DD, Bhardwaj V, et al. Role of antioxidants in prophylaxis and therapy: a pharmaceutical perspective. *J Control Release*. 2006;113(3):189–207. doi: 10.1016/j.jconrel.2006.04.015
163. Yu L, Liu S, Jia S, et al. Emerging frontiers in drug delivery with special focus on novel techniques for targeted therapies. *Biomed Pharmacother*. 2023;165:115049. doi: 10.1016/j.bioph.2023.115049
164. Khatoon R, Alam MA, Sharma PK. Current approaches and prospective drug targeting to brain. *J Drug Deliv Sci Technol*. 2021;61:102098. doi: 10.1016/j.jddst.2020.102098
165. Bharathala S, Sharma P. Chapter 8 - biomedical applications of nanoparticles. In: Maurya P, and Singh S, editors. *Nanotechnology model animal biotechnology*. India: Elsevier; 2019. p. 113–132.
166. Madkour LH. *Nanoparticle-based drug delivery in cancer treatment*. Boca Raton: CRC Press; 2022
167. Afzal O, Altamimi ASA, Nadeem MS, et al. Nanoparticles in drug delivery: from history to therapeutic applications. *Nanomater*. 2022;12(24):4494. doi: 10.3390/nano12244494