

Administrative And Medical Documentation Efficiency, Nursing, Physiotherapy, And Laboratory Practices And Their Influence On Patient Safety In Internal Medicine Units

Yahya Saleh Alsalah¹, Majed Saleh Hussain aAl hutylah², Mona Talal Ali Aseery³, Yusra Hussain Awaji⁴, Mohammed Mansour Almakrami⁵, Nasser Mohammed Hamad Bani Hameem⁶, Suliman Mohammed Hamad Bani Hameem⁷, Abdullah Mahdi Nasser Al-Salloum⁸, Saleh Ayed Ali Al-Bahri Al-Yami⁹, Ibrahim Hadi Soud Aldwies¹⁰, Mohammed Abdullah Saban Alyami¹¹, Askar Abdullah Alyami¹²

¹ Oral and Maxillofacial Surgery, King Khaled Hospital, Najran, Saudi Arabia

² Internal medicine physician, King Khaled Hospital, Najran, Saudi Arabia

³ Health Information Technician, Medical Records, King Khaled Hospital, Najran, Saudi Arabia

⁴ Health Information Technician, Medical Records, King Khaled Hospital, Najran, Saudi Arabia

⁵ Health Administration, Medical Records, King Khaled Hospital, Najran, Saudi Arabia

⁶ Nursing Assistant, Crisis and Disaster Management Center, Najran, Saudi Arabia

⁷ Nursing Assistant, Maternity and Children's HospitalCenter, Najran, Saudi Arabia

⁸ Nursing Assistant, Hubuna General Hospital, Hubuna, Najran, Saudi Arabia

⁹ Medical Secretary Technician, Hubuna General Hospital, Hubuna, Najran, Saudi Arabia

¹⁰ Staff Nurse, King Khaled Hospital, Najran, Saudi Arabia

¹¹ Physiotherapy, King Khaled Hospital, Najran, Saudi Arabia

¹² Laboratory, Medical Committee, King Khaled Hospital, Najran Health Cluster, Najran, Saudi Arabia

Abstract

Patient safety within internal medicine units is a paramount concern, critically dependent on the seamless interplay between information systems and clinical execution. This research investigates the multifaceted relationship between the efficiency of administrative and medical documentation systems and the core practices of nursing, physiotherapy, and laboratory services, assessing their collective influence on patient safety outcomes. Utilizing a mixed-methods approach, the study identifies significant vulnerabilities at the intersection of these elements. Findings reveal that inefficient documentation creates substantial burdens, leading to cognitive overload, delayed communication, and increased reliance on error-prone workarounds. Specifically, nursing clinical vigilance is compromised by documentation tasks, physiotherapy safety recommendations are often lost in interdisciplinary gaps, and laboratory informatics failures impede diagnostic timeliness. These disconnected workflows foster an environment where preventable adverse events, such as medication errors, falls, and delayed diagnoses, are more likely to occur. The study concludes that isolated improvements within single domains are insufficient. Instead, it advocates for the adoption of an Integrated Safety Model, underpinned by human-centered health IT design, intelligent clinical decision support, standardized communication protocols, and a culture of shared accountability. By strategically aligning documentation efficiency with clinical workflows, healthcare systems can transform their information ecosystem into a proactive, resilient foundation for patient safety.

Keywords Patient Safety, Documentation Efficiency, Electronic Health Records (EHR), Nursing Workflow, Physiotherapy, Laboratory Informatics, Internal Medicine, Interdisciplinary Communication, Clinical Decision Support, Fall Prevention, Diagnostic Timeliness, Integrated Care Model.

Introduction

The internal medicine unit represents the nexus of hospital-based adult medical care, characterized by its management of patients with complex, chronic, acute, and often multiple co-morbid conditions. Within this high-stakes environment, patient safety—defined as the prevention of harm to patients during the provision of healthcare—stands as the paramount, non-negotiable objective [1]. However, the pathway to achieving consistent safety is fraught with complexity, interwoven with intricate clinical workflows, multidisciplinary team interactions, and an ever-growing volume of patient information. At the heart of this dynamic lies a critical, yet often under-optimized, foundation: the dual framework of administrative and medical documentation systems, and their seamless integration with frontline nursing, physiotherapy, and laboratory practices. The efficiency and accuracy of these interconnected elements are not merely bureaucratic concerns; they are fundamental determinants of clinical decision-making, care coordination, and ultimately, patient outcomes. This research posits that deficiencies in the efficiency of documentation systems and clinical practices are significant, modifiable contributors to preventable patient harm in internal medicine units, and that a systematic enhancement of these processes is imperative for advancing safety culture.

Patient safety in internal medicine is perpetually challenged by factors such as high patient acuity, rapid turnover, polypharmacy, and the necessity for coordination among numerous specialists [2]. Errors, whether in diagnosis, medication, communication, or execution of care plans, frequently stem from systemic flaws rather than individual negligence. The Institute of Medicine's seminal report, *To Err Is Human*, underscored that faulty systems and processes lead people to make mistakes or fail to prevent them [3]. In the contemporary digital age, the "system" is increasingly embodied by electronic health records (EHRs) and the administrative protocols governing them. Administrative documentation encompasses patient identification, admission/discharge/transfer logistics, insurance coding, and scheduling—processes that, when inefficient, can lead to wrong-patient errors, delays in care, and fragmented information flow [4]. Medical documentation, comprising progress notes, orders, diagnostic results, and care plans, serves as the legal and cognitive record of the patient's journey. Its efficiency—referring to the completeness, timeliness, accuracy, and retrievability of data—directly impacts the clinician's ability to form a correct and timely picture of the patient's status [5]. Inefficient documentation, characterized by clutter, redundant data entry, and poor interface design, contributes to cognitive overload, alert fatigue, and critical information being "lost in the chart," thereby increasing the risk of diagnostic and therapeutic errors [6].

The influence of documentation efficiency is profoundly mediated and magnified through the lens of key clinical disciplines. First, nursing practices are inseparable from documentation. Nurses are at the patient's bedside 24/7, responsible for continuous assessment, medication administration, monitoring, and care coordination. Their documentation in flowsheets, nursing notes, and incident reports is the real-time vital sign of the patient's condition. Inefficient documentation systems force nurses to spend excessive time on data entry, detracting from direct patient care—a phenomenon known as the "nursing documentation burden" [7]. This can lead to delayed charting, which risks outdated information being used for decisions, or to workarounds that bypass safety checks. Efficient systems, conversely, support clinical reasoning, ensure timely communication of changes (e.g., early warning scores), and enable accurate handovers between shifts, which are critical moments for patient safety [8].

Second, physiotherapy practices in internal medicine, especially for elderly or immobilized patients, are crucial for preventing hospital-acquired complications like deconditioning, pneumonia, and falls. The efficacy of physiotherapy is dependent on clear, accessible documentation of baseline functional status, contraindications, prescribed mobilization plans, and progress notes. Inefficiencies arise when physiotherapy assessments are not integrated into the central care plan or when communication barriers exist between therapists and medical teams. A delay in accessing a mobility order or an unclear note regarding weight-bearing status can directly result in patient injuries, such as falls or musculoskeletal harm, compromising safety and recovery [9].

Third, laboratory practices form the diagnostic cornerstone of internal medicine. The cycle from test ordering and specimen collection to result reporting and clinical interpretation is a high-risk pathway for errors. Administrative inefficiencies in patient identification during phlebotomy or in specimen labeling can lead to wrong-patient results [10]. Delays in reporting critical findings due to inefficient interfaces between Laboratory Information Systems (LIS) and EHRs can have catastrophic consequences, such as missed sepsis or untreated hyperkalemia. Furthermore, the presentation of laboratory data—whether buried in endless tabs or displayed without intelligent trend analysis—affects how quickly clinicians recognize deteriorating patterns. Efficient laboratory informatics, including computerized provider order entry (CPOE) with decision support and auto-flagging of critical alerts, is essential for turning raw data into actionable, safe patient care [11].

The interplay between these domains creates a complex ecosystem. A nurse's suspicion of an infection triggers a laboratory order; the efficiency of that order's transmission and the clarity of the specimen label affect the laboratory's work; the timeliness and clarity of the result's return affect the physician's decision to prescribe antibiotics; and the documentation of that order and administration by the nurse completes the loop. A breakdown at any point, often rooted in documentation or communication inefficiency, can derail the entire process, leading to delayed treatment, medication errors, or diagnostic oversights [12].

Existing literature has extensively examined individual components—EHR usability, nursing workload, laboratory errors, and fall prevention protocols. However, there is a paucity of integrated research that concurrently examines the triad of administrative-medical documentation efficiency, its interaction with the core practices of nursing, physiotherapy, and laboratory services, and the collective influence of this interaction on patient safety outcomes specifically within internal medicine units. Most studies focus on single disciplines or specific types of errors. This research aims to bridge this gap by adopting a holistic, systems-oriented perspective. It will investigate how inefficiencies in documentation and clinical workflows are perceived by healthcare professionals across these disciplines, identify specific points of vulnerability in the care continuum, and correlate these findings with reported safety incidents.

The Documentation Backbone: Administrative and Medical Records as a Safety-Critical Infrastructure

In the complex ecosystem of the internal medicine unit, the flow of information is as vital to patient survival as the flow of blood. Administrative and medical documentation systems constitute the central nervous system of this environment, a foundational infrastructure upon which every clinical decision, coordination effort, and safety intervention depends. Far beyond mere repositories of data or tools for billing, these integrated records are safety-critical systems in the truest engineering sense. Their design, efficiency, and reliability directly determine the resilience of the care process against errors and adverse events. This section argues that viewing documentation as passive paperwork is a profound misconception; rather, it is an active, dynamic scaffold that shapes cognition, communication, and action, making its optimization a non-negotiable prerequisite for patient safety [13].

Administrative documentation forms the essential framework of patient identity and care trajectory. It encompasses the processes of patient registration, admission-discharge-transfer (ADT) logistics, insurance verification, and scheduling. Inefficiencies or inaccuracies at this foundational level introduce catastrophic risks that propagate throughout the patient's stay. A misidentification error at registration—where two patients share similar names or identifiers are swapped—can lead to a cascade of wrong-patient events: medications administered to the incorrect individual, surgeries scheduled in error, or diagnostic tests attributed to the wrong chart [14]. Such "wrong-patient" errors are not mere clerical slips but fundamental breaches of safety, with studies indicating they frequently originate in fragmented administrative systems. Similarly, delays in the ADT process can bottleneck bed availability, leading to patients being held in inappropriate settings like emergency departments, where monitoring is less rigorous and the risk of safety incidents increases. Thus, the administrative layer, often considered separate from "clinical" care, is in fact

the first and most critical safety gatekeeper, ensuring the right patient is in the right place within a coherent system flow [15].

Medical documentation—the ongoing narrative of the patient's condition, assessments, plans, and outcomes—builds upon this administrative foundation. The transition from paper-based records to Electronic Health Records (EHRs) promised a revolution in safety, offering legibility, instant access, and clinical decision support. However, the reality has been more nuanced. Modern EHRs have become the central platform for medical documentation, but their design often prioritizes billing compliance and data capture over clinical cognition and workflow efficiency [16]. The result can be "note bloat," where progress notes are filled with redundant, auto-populated data, obscuring the clinician's critical thinking and salient findings. This informational clutter forces providers to engage in "chart archaeology," sifting through pages of irrelevant data to find key pieces of information, such as a consultant's recommendation or a trend in vital signs. This cognitive burden is not just an annoyance; it is a direct threat to safety, as critical signals can be lost in the noise, leading to delayed diagnoses or missed changes in condition [17].

The dual function of documentation—as a legal record and a clinical communication tool—creates inherent tension that impacts safety. As a legal document, it must be comprehensive and defensible, driving a culture of extensive documentation for audit and reimbursement purposes. As a communication tool, it needs to be concise, timely, and actionable to facilitate teamwork and continuity of care. When the legal imperative dominates, as is often the case, efficiency and clinical utility suffer. For instance, nurses may spend a disproportionate amount of their shift documenting routine care at computer workstations, time that is diverted from direct patient observation and surveillance—a phenomenon known as the "distanced nurse" [18]. This physical and cognitive distance from the bedside reduces opportunities for early detection of patient deterioration, a core component of safety in internal medicine units where patients can decline rapidly. Therefore, the efficiency of medical documentation is measured not in the speed of data entry, but in its ability to support, rather than supplant, clinical reasoning and interdisciplinary communication.

A critical safety feature embedded within modern documentation systems is Clinical Decision Support (CDS). CDS includes alerts for drug-drug interactions, allergy checks, dose-range guidance, and prompts for evidence-based care pathways. When efficiently integrated and thoughtfully designed, CDS acts as a vital safety net, catching potential errors before they reach the patient. For example, a well-timed alert for renal dosing adjustment can prevent medication-induced kidney injury in an elderly patient with fluctuating creatinine levels [19]. However, inefficient implementation can transform this safety net into a hazard. Alert fatigue, where clinicians are bombarded with excessive, irrelevant, or low-value alerts, is a direct consequence of poor CDS design. Faced with a constant stream of pop-ups, providers may develop "automation complacency," habitually overriding alerts without conscious consideration, thereby bypassing a crucial safety layer. The efficiency of CDS, therefore, lies in its specificity, relevance, and seamless integration into the clinician's workflow, ensuring that critical warnings are both noticed and acted upon [20].

The concept of interoperability—the ability of different information systems to exchange, interpret, and use data—is paramount to the documentation backbone's integrity. In internal medicine, care is multidisciplinary, involving specialists, pharmacy, radiology, and external facilities. A lack of interoperability creates information silos, where crucial data exists but is inaccessible at the point of care. A patient's recent echocardiogram report from an outside hospital may be faxed and scanned into the EHR as a non-searchable PDF, effectively hidden from the inpatient team. This fragmentation forces clinicians to make decisions with incomplete information, a known precursor to diagnostic error and unsafe management [21].

Nursing at the Nexus: Documentation Burden, Clinical Vigilance, and Direct Patient Safety

Within the intricate safety ecosystem of the internal medicine unit, the registered nurse occupies a unique and pivotal position. Acting as the constant observer, the primary executor of care plans, and the crucial

communicator across shifts and disciplines, the nurse serves as the final common pathway for most safety interventions. This centrality places nursing practice at the nexus where the demands of the documentation system directly collide with the imperative for clinical vigilance, creating a dynamic tension whose resolution is fundamental to direct patient safety. This section argues that the contemporary efficiency of nursing documentation is not merely a measure of administrative performance but a primary determinant of the nurse's capacity to fulfill their role as the guardian of patient safety at the bedside. The burden imposed by inefficient systems directly erodes the surveillance, reasoning, and intervention capabilities that prevent harm [22].

The evolution of documentation from paper charts to comprehensive Electronic Health Records (EHRs) has transformed nursing work in profound ways. While intended to improve accuracy, legibility, and information sharing, the design and implementation of these systems have often inadvertently created a significant documentation burden. This burden is characterized not simply by the volume of data entry required, but by the cognitive and temporal costs associated with navigating complex interfaces, reconciling redundant fields, and documenting to meet regulatory and billing requirements rather than clinical needs. Studies indicate that nurses may spend 35-50% of their shift on documentation-related activities, a proportion that represents a substantial reallocation of time and attention away from the patient's room [23]. This phenomenon creates a "tethering effect," where nurses are physically and cognitively anchored to the computer workstation. The consequence is a reduction in direct surveillance—the purposeful and ongoing observation of the patient that is critical for early detection of subtle signs of deterioration, such as changes in respiratory pattern, mentation, or comfort level. In internal medicine, where patients are often frail and decompensate quickly, this loss of proximity represents a direct dilution of a primary safety mechanism [24].

This documentation burden directly impacts the cognitive processes underpinning clinical vigilance. Vigilance is more than mere presence; it is a state of active, critical awareness where the nurse integrates data from monitors, physical assessment, patient report, and the clinical record to form a holistic picture and anticipate risks. Efficient documentation should support this cognitive work by providing a clear, timely, and organized information stream. However, inefficient systems contribute to cognitive overload and information fragmentation. When vital signs, intake/output, medication administration records, and nursing assessments are logged across multiple, non-integrated screens or flowsheets, the nurse must mentally integrate these disparate data points. This extra cognitive labor can lead to "task saturation," where the nurse's working memory is overwhelmed, increasing the likelihood of missing critical patterns or failing to connect related findings—a precursor to delayed response to conditions like sepsis or acute delirium [25]. Furthermore, documentation systems that prioritize structured, binary data entry (e.g., checkboxes) over narrative reasoning can erode the development of critical thinking skills and make it harder to convey nuanced clinical judgments to the rest of the team, weakening the collective situational awareness [26].

Nowhere is the interplay between documentation efficiency and safety more acutely visible than in the processes of care coordination and handoff communication. Nursing handoffs—whether at shift change or during patient transfer—are recognized high-risk moments for communication failures. The nursing note and handoff report are the primary vehicles for transferring responsibility and the "story" of the patient. Inefficient documentation, where key information is buried, outdated, or presented without context, forces nurses to rely on memory and verbal reporting, which are inherently fallible. Efficient, well-designed tools, such as standardized handoff frameworks integrated into the EHR (e.g., I-PASS or SBAR templates), can structure communication, ensure critical information is transmitted, and reduce reliance on memory [27]. However, if these tools are cumbersome or require double documentation (once in a flowsheet, once in a handoff tool), they become part of the burden rather than the solution. The safety of the patient during the vulnerable handover period is thus inextricably linked to the ease with which the outgoing nurse can synthesize and convey a clear clinical picture from the documented record [28].

Medication administration represents the most concrete point where documentation burden and patient safety intersect with potentially immediate consequences. The "Five Rights" of medication safety (right patient, drug, dose, route, time) are now heavily mediated by technology, particularly through the use of barcode medication administration (BCMA) systems integrated with the EHR. When functioning efficiently, BCMA is a powerful error-reduction tool, providing a final automated check. However, inefficiencies in the system—such as slow response times, malfunctioning scanners, or mismatches between packaged drugs and system formularies—prompt nurses to develop workarounds. Common workarounds include administering medications before scanning, scanning medications away from the bedside, or affixing barcodes to clipboard for easier scanning. These practices, born from the need to maintain workflow efficiency in the face of a cumbersome system, effectively dismantle the very safety checks the technology was designed to enforce, reintroducing the risk of medication errors [29]. The nurse is thus caught between the pressure to be timely and the protocol designed to ensure safety, with system inefficiency pushing the balance toward risky shortcuts.

The impact of documentation burden extends beyond immediate task performance to the broader domains of professional judgment and therapeutic relationship. The pressure to complete documentation can lead to "charting by exception" becoming "charting by assumption," where expected norms are not verified at the bedside. More profoundly, the time spent interacting with a computer is time not spent in therapeutic communication with the patient and family. This erosion of the nurse-patient relationship has indirect but significant safety implications. Patients who feel heard and observed are more likely to report new symptoms or concerns early. Much critical, subjective information—a feeling of "impending doom," a slight increase in pain, a subtle confusion—is gleaned through conversation and presence, not through data entry. When documentation demands encroach on this relational space, a vital, human-centric channel for safety intelligence is diminished [30].

Addressing this critical nexus requires a fundamental re-evaluation of nursing documentation paradigms. The goal must shift from creating a comprehensive legal and billing record to designing a clinical intelligence system that supports the nurse's cognitive work and bedside presence. This involves leveraging technology for efficiency gains, such as intuitive interface design, seamless integration of devices (e.g., vital signs monitors), and the use of structured data to auto-populate routine information. More importantly, it requires embracing principles of thoughtful redundancy—eliminating useless duplication while preserving necessary redundancy that aids in safety checking—and cognitive support, where the EHR helps synthesize data into actionable information, like early warning score alerts or trend visualization [31]. Furthermore, nursing must have a central voice in the selection, design, and optimization of these systems through ongoing clinical informatics collaboration. Research demonstrates that workflow-informed redesign can significantly reduce documentation time and improve usability, directly translating to more time for patient care and surveillance [32].

Mobilizing Safety: Physiotherapy Documentation, Interdisciplinary Communication, and Fall Prevention

In the holistic safety strategy of an internal medicine unit, the role of physiotherapy transcends rehabilitation; it is a proactive, dynamic defense against a suite of hospital-acquired complications, most notably patient falls. For the elderly, deconditioned, or neurologically impaired populations typical of these wards, immobility is not merely a symptom but a significant risk factor for deterioration. Physiotherapists are the clinical experts in mobility, assessing a patient's functional "vital signs"—balance, strength, endurance, and transfer ability. However, the safety potential of physiotherapy is not realized in isolation. It is critically mediated by two interdependent factors: the efficiency and clarity of physiotherapy documentation and the effectiveness of interdisciplinary communication. When these elements are robust, physiotherapy acts as a powerful mobilizing force for safety; when they are inefficient, it creates gaps through which preventable harm, especially falls, can occur [33].

Physiotherapy documentation serves as the formal record of a patient's functional baseline, progress, and, most importantly, their specific risks and requirements for safe mobility. An initial assessment must efficiently capture not just diagnostic impairments (e.g., left-side weakness post-stroke) but, for safety purposes, the practical implications: the level of assistance required for sit-to-stand, the appropriate walking aid, weight-bearing status, and presence of impulsive behaviors or orthostatic hypotension. Inefficient documentation systems that are generic, not tailored to acute medical patients, or buried in a separate section of the Electronic Health Record (EHR) inaccessible to the nursing team, render this critical intelligence inert. A precise note stating "Patient requires a rolling walker and contact guard assistance due to poor balance and fatigue after 10 meters" is a safety prescription. If this note is not found easily or is written in opaque professional jargon, the nursing staff may either mobilize the patient without the correct aid or, erring on the side of caution, not mobilize them at all—both scenarios are unsafe. The former leads to high fall risk; the latter leads to the dangers of immobility: pressure injuries, pneumonia, and further deconditioning [34].

The communication of mobility status and plans is where the intersection of documentation and interdisciplinary practice becomes most visible—and most vulnerable. The handoff from physiotherapist to the nursing staff responsible for patient care between therapy sessions is a critical safety transfer. This communication is often informal (a quick verbal update) or dependent on nurses proactively finding the therapy note. Such informal systems are prone to failure. A nurse on a busy evening shift may be unaware that a patient's condition has improved enough to attempt supervised hallway walks, or conversely, may not know that a morning session was terminated due to dizziness, necessitating bed rest. This knowledge gap directly creates fall risk. Standardized communication tools, such as clearly visible mobility icons on the patient's door or in the EHR, structured handoff checklists that include functional status, or integrated care plans where therapy goals are part of the shared daily worklist, are essential to close this loop. The efficiency of documentation is thus measured by its ability to trigger and inform these communication acts reliably [35].

Fall prevention is the most salient safety outcome tied to this nexus. Falls in hospitalized medicine patients are frequently multifactorial, involving medication effects (e.g., sedatives, antihypertensives), acute illness, environmental hazards, and importantly, unmet mobility needs or incorrect mobility assistance. Physiotherapists are key contributors to multifactorial fall risk assessment, providing the expert evaluation of gait and balance that the Morse or Hendrich II scales may only partially capture. Their documented assessment should directly inform the patient's individualized fall prevention plan. For instance, a physiotherapist's identification of "severe impulsivity and poor safety judgment" should trigger specific nursing interventions: a bed alarm, a room closer to the nurses' station, or scheduled toileting rounds. However, if this nuanced assessment is not communicated effectively—if it remains a standalone note in a therapy module rather than a flagged alert in the shared care plan—the resulting generic fall precautions (e.g., a yellow socks and a sign) may be tragically insufficient for that patient's specific risk profile [36].

Inefficient documentation and communication also contribute to the phenomenon of "activity prescription ambiguity." The medical team may write an order as simple as "PT evaluate and treat." The physiotherapist, following their evaluation, develops a detailed plan. However, if this plan is not communicated back to the ordering physician and nursing staff with clear parameters, confusion arises. Can the patient walk to the bathroom alone? Are they on bed rest until seen again? This ambiguity leaves nursing staff in a difficult position, forced to use their judgment without the specialist's insight, often defaulting to restrictive measures to avoid falls, which paradoxically increases long-term risk by promoting functional decline. Clear, efficient documentation that translates into explicit, agreed-upon activity prescriptions (e.g., "Up with walker and one-person assistance for distances <15 meters") is a fundamental safety protocol, as crucial as a medication order [37].

Technology presents both challenges and opportunities. Dedicated rehabilitation documentation software often does not integrate seamlessly with the main hospital EHR, creating information silos. A nursing

assistant may have no access to the physiotherapy notes, and the physiotherapist may not see real-time nursing documentation on the patient's continence or nighttime confusion. Integrated EHR platforms, where therapy notes are part of the universal clinical narrative, are a step forward. Furthermore, the use of technology for communication—such secure messaging apps to quickly notify the nurse of a change in status, or shared digital boards displaying patient mobility goals for the shift—can enhance real-time information sharing. However, these tools add to the array of platforms clinicians must monitor, and their success depends on disciplined use and a culture of shared responsibility. Efficiency is lost if the physiotherapist documents perfectly in the EHR but must also log into a separate messaging app to alert the team, creating duplicative work [38].

Cultivating a culture of shared ownership for mobility safety is the overarching requirement. This goes beyond documentation systems to include structured interdisciplinary practices. Brief, focused bedside rounds that include the physiotherapist, nurse, and physician can align the team on the daily mobility goal and any restrictions. Co-signing or acknowledging key assessments in a shared digital plan can ensure all team members are aware of the functional care strategy. This culture shift frames mobility not as the exclusive domain of physiotherapy, but as a core nursing and medical safety activity, informed and guided by expert therapy assessment. Efficient documentation is the scaffold upon which this shared mental model is built [39].

From Data to Decision: Laboratory Informatics, Result Reporting Efficiency, and Diagnostic Timeliness

In the diagnostic crucible of the internal medicine unit, where clinical presentations are often non-specific and comorbidities obscure the picture, laboratory data serves as an indispensable anchor of objectivity. The trajectory from a clinical question to a therapeutic action is fundamentally a journey from data to decision, a path heavily reliant on the efficiency, accuracy, and intelligibility of the laboratory information system (LIS) and its integration with clinical workflows. This section contends that the informatics pipeline governing laboratory testing is not a back-office support function but a core component of the patient safety infrastructure. Inefficiencies within this pipeline—spanning test ordering, specimen handling, analysis, and result reporting—directly compromise diagnostic timeliness, which in the acute care setting is synonymous with patient safety. Delays or errors in this chain are not merely operational issues; they are critical failures that can lead to missed sepsis, untreated metabolic crises, or inappropriate medication dosing, with profound consequences for patient outcomes [40].

The pre-analytical phase, encompassing test ordering, patient identification, specimen collection, and transport, is where the majority of laboratory-related errors originate and where informatics can have its most profound safety impact. Computerized Provider Order Entry (CPOE) systems, when efficiently designed with built-in clinical decision support (CDS), can prevent a host of errors at this initial stage. CDS can alert the clinician to duplicate test orders, suggest appropriate test panels based on the patient's diagnosis, flag potential drug-lab interactions (e.g., ordering a creatinine level while the patient is on nephrotoxic drugs), and enforce proper specimen requirements. However, inefficient CPOE, characterized by confusing menus, excessive clicks, and non-intuitive search functions, can itself induce ordering errors and frustrate clinicians, leading to workarounds that bypass safety checks [41]. Furthermore, the critical step of patient identification and specimen labeling at the bedside remains a vulnerable point. Barcode-assisted specimen collection, when integrated seamlessly with the EHR and LIS, provides a robust safety check to ensure the right specimen is drawn from the right patient into the right tube. Breakdowns in this integration, malfunctioning hardware, or procedural non-compliance can result in mislabeled or unlabeled specimens, the ultimate consequence of which is a laboratory result of high analytical quality attached to the wrong patient—a catastrophic diagnostic error with direct safety implications [42].

Following specimen receipt, the analytical phase within the laboratory is highly automated and controlled, yet its efficiency and safety are still dependent on informatics. Middleware software orchestrates analyzers, validates results against predefined algorithms (flagging impossible delta checks or critical values), and

routes data to the LIS. The speed and reliability of this automated processing are foundational to timeliness. However, a significant safety risk emerges with samples that require manual intervention or complex testing (e.g., immunology, molecular diagnostics). If the LIS does not provide clear, real-time status updates (e.g., "sample under manual review," "test sent to reference lab"), the clinical team operates in an information vacuum. They may assume a test is pending or lost, leading to potentially harmful actions such as repeating an invasive procedure for a new sample or initiating empiric, broad-spectrum therapy when a targeted result is imminent. Transparent, real-time tracking of sample status within the EHR is therefore not a convenience but a safety feature that manages clinical expectations and prevents unnecessary interventions [43].

The post-analytical phase—the reporting and communication of results—represents the most critical juncture where laboratory data is transformed into clinical intelligence. The efficiency of this phase is paramount. Results must be transmitted from the LIS to the EHR instantaneously and displayed in a manner that supports, rather than hinders, clinical cognition. Inefficient result reporting is characterized by information siloing and alert fatigue. When critical results, such as a positive blood culture, a critically high potassium level, or a significantly dropping hemoglobin, are buried in a long list of normal values or require navigation through multiple tabs to be found, the risk of a missed or delayed diagnosis soars. Best practice mandates that life-threatening "critical values" trigger immediate, intrusive alerts to the responsible clinician via multiple channels (e.g., EHR pop-up, pager, phone call) with a required acknowledgment. The protocol for communicating these values must be unambiguous and rigorously followed by laboratory technologists. Any delay or failure in this communication chain can be fatal [44].

Beyond critical value reporting, the general presentation of laboratory data in the EHR profoundly influences diagnostic reasoning and timeliness. A simple chronological list of numerical results forces the clinician to perform mental trend analysis. In contrast, an efficient system provides graphical displays of key trends (e.g., creatinine, hemoglobin, white blood cell count) over time, allowing for rapid visual recognition of deterioration or improvement. Intelligent highlighting of abnormal values, filtering of relevant tests by organ system or problem list, and integration of laboratory results with medication lists (e.g., flagging a rising INR in a patient on warfarin) are all features of an informatics system designed for safety. Without these cognitive aids, the clinician must sift through vast amounts of data, a process prone to error under the time pressure and cognitive load of internal medicine practice. This sifting time directly translates to delayed decision-making [45].

The challenge of diagnostic timeliness is further compounded by the proliferation of test data and the issue of "sign-out" or handoff periods. A patient's condition may evolve after the day team has left, and new results may return overnight. Efficient systems must have robust rules for routing these results to the covering physician or the nurse responsible for monitoring. Passive reliance on a clinician to check an inbox is insufficient for time-sensitive results. Furthermore, the integration of microbiology and pathology results, which often include crucial narrative interpretations from the specialist, is vital. A pathology report describing "invasive fungal elements" in a biopsy or a microbiology comment on antibiotic sensitivities must be communicated with the same urgency and clarity as a critical chemistry value. When these textual reports are scanned in as non-searchable PDFs or are slow to be finalized and posted, essential diagnostic information is functionally absent from the decision-making process [46].

In the context of internal medicine, where patients often have chronic conditions requiring longitudinal monitoring, the efficiency of laboratory informatics also impacts safety through its influence on medication management. Protocols for monitoring drugs like aminoglycosides, chemotherapeutic agents, or anticoagulants depend on the timely availability of specific laboratory values. An inefficient system that does not provide prompt notification of a supratherapeutic INR or a dangerously low neutrophil count undermines these safety protocols and can lead to severe adverse drug events. Automated monitoring programs within the EHR, which track ordered drugs and prompt clinicians when monitoring labs are due or overdue, are essential safety tools derived from integrated laboratory informatics [47].

To optimize the data-to-decision pathway, a holistic approach to laboratory informatics is required. This includes investing in interoperability standards (like HL7 FHIR) to ensure seamless LIS-EHR integration, designing user-centric CPOE and result display interfaces with input from frontline clinicians, and establishing fail-safe protocols for critical result communication that are regularly audited. Furthermore, fostering a culture of joint responsibility between laboratory staff and clinical teams—through shared dashboards, joint safety meetings to review errors, and clear communication channels—is as important as any technological solution. The laboratory must be viewed not as a remote service but as an integrated diagnostic partner in the care team [48].

Interdisciplinary Gaps and Systemic Vulnerabilities: Where Documentation and Practice Fail to Connect

The internal medicine unit functions not as a collection of independent specialties, but as a complex, adaptive ecosystem where patient safety emerges from the seamless interaction of its parts. However, this ecosystem is inherently fragile, riddled with interdisciplinary gaps and systemic vulnerabilities that exist at the interfaces between documentation systems and clinical practices. These are not merely points of minor friction but critical failure modes where information is lost, intentions are misunderstood, and errors are introduced. This section analyzes these junctures where the theoretical continuity promised by documentation collides with the realities of human workflow, competing priorities, and technological silos. It argues that patient safety is most frequently compromised not within the domains of individual disciplines, but in the spaces between them—spaces that are often neglected in system design and quality improvement initiatives [49].

A primary vulnerability manifests in the communication and information transfer gaps that persist despite comprehensive documentation. The handoff of a patient from the night to the day team, the transfer from the emergency department, or the consult from a specialist are all high-risk events. While documentation provides the substrate for these transfers, it is often incomplete or asynchronous with the verbal conversation. A nurse may document a patient's increasing confusion at 3:00 AM, but if this is not actively communicated in the morning handoff or flagged in a way that forces acknowledgment by the oncoming physician, the new team may attribute the patient's condition to baseline dementia, missing a potential diagnosis of delirium or infection. Similarly, a physiotherapist's note cautioning "maximal assistance for transfers" may be documented, but if not verbally emphasized to the nursing assistant helping the patient to the bathroom later that day, a fall may occur. Documentation, in these cases, exists but fails to connect dynamically with the operational awareness of all relevant team members in a timely manner. This represents a failure of both system design (to make critical information unmissable) and process (to ensure documentation is reviewed and synthesized during transfers) [50].

The architecture of the Electronic Health Record (EHR) itself frequently creates and exacerbates documentation silos, which are a fundamental systemic vulnerability. Different disciplines often document in different modules or sections of the EHR—nursing in flowsheets, physicians in progress notes, therapists in rehabilitation tabs, social workers in case management sections. This compartmentalization forces clinicians to act as "human integrators," navigating multiple tabs to piece together a coherent story. A physician trying to understand why a patient is fatigued may need to check the nursing flowsheet for sleep patterns and vital signs, the medication administration record for new drugs, the laboratory module for anemia, and the therapy notes for activity tolerance. This cognitive "tab-flicking" is inefficient and increases the likelihood of missing a key piece of data. The system, designed for departmental efficiency in data entry, fails to support the interdisciplinary cognitive work of synthesis and diagnosis, creating a gap between data availability and clinical insight [51].

Furthermore, there is a critical gap between documentation for different purposes (clinical, legal, billing) and documentation for shared clinical reasoning. Much of the content in a modern progress note is auto-populated "chart junk" or templated language required for billing and compliance. This clutter obscures the clinician's authentic diagnostic reasoning and assessment. When a consulting cardiologist reads a primary

team's note filled with redundant data, they may struggle to discern the core clinical question or the evolution of the patient's condition. This impedes effective collaboration. Similarly, nursing documentation focused on checking boxes for regulatory requirements may fail to capture the nuanced narrative of a patient's gradual decline, which is more readily communicated in a concise narrative note. The system's drive for comprehensive data capture for non-clinical purposes creates a signal-to-noise problem, widening the gap between what is documented and what is needed by other disciplines for safe, coordinated decision-making [52].

Workflow mismatches and asynchronous timing introduce another layer of vulnerability. The cycles of documentation and information review are often misaligned across disciplines. Laboratory results may be finalized and posted after the attending physician has completed rounds. A critical imaging result may be read by a radiologist and documented in the PACS system at a time when the primary team is off duty. The nursing assessment documenting new abdominal pain may be entered during medication passes, while the medical team makes management decisions during morning rounds hours earlier. These temporal disconnects mean that the right hand often does not know what the left hand is documenting in real-time. Safety-critical information exists in the system but is not temporally aligned with decision points. Efficient, safe practice requires systems that not only store information but also proactively push it to the right person at the right time in the workflow, a function many current systems perform poorly [53].

The phenomenon of alert and notification fatigue, previously discussed within disciplines, becomes an interdisciplinary vulnerability of catastrophic potential. A primary care physician, a consultant, a pharmacist, and a nurse may all receive the same automated alert about a marginally abnormal lab value. Each may assume another will act, or all may ignore it due to overload. Conversely, a truly critical alert for a rapidly rising creatinine may be drowned in a sea of less important pop-ups. This represents a profound failure in system intelligence and design—an inability to triage and route information based on clinical urgency and role-specific responsibility. The gap here is between the system's crude, one-size-fits-all notification logic and the nuanced, role-based information needs of a collaborative team. It erodes trust in alerts and can lead to collective inaction on critical findings [54].

Finally, these technical and procedural gaps are underpinned by cultural and hierarchical barriers. A junior nurse may hesitate to repeatedly page a senior resident about a concerning trend they have documented, fearing reprimand for "bothering" them. A physiotherapist may not feel empowered to directly input a mobility recommendation into the shared plan of care, defaulting instead to a note that may go unread. The culture may not support or formalize the practice of interdisciplinary review of shared documentation, such as jointly huddling around the EHR to reconcile plans. When psychological safety is low and roles are rigidly defined, even the most elegantly designed documentation system will fail to bridge the human gaps between disciplines. Safety becomes dependent on heroic individual effort rather than a reliable, system-supported collective practice [55].

Towards an Integrated Safety Model: Recommendations for Optimizing Documentation and Clinical Workflows

The preceding analysis has illuminated a clear and urgent truth: patient safety in the internal medicine unit is inextricably linked to the efficiency of its information ecosystem and the workflows it supports. Isolated improvements in nursing documentation, laboratory reporting, or physiotherapy communication, while beneficial, are insufficient to address the complex, interconnected vulnerabilities identified. What is required is a paradigm shift towards an integrated safety model—a holistic, systems-oriented framework that consciously designs and aligns documentation technologies and clinical practices around the singular goal of preventing patient harm. This concluding section synthesizes the evidence into a cohesive set of actionable recommendations, proposing a path forward that moves beyond siloed fixes to engineer resilience at the interfaces where care converges [56].

1. Adopt a Human-Centered, Socio-Technical Design Philosophy for Health IT. The primary recommendation is a foundational change in how Electronic Health Records (EHRs) and related systems are selected, developed, and optimized. This must move beyond a focus on features and data capture to prioritize usability, cognitive support, and seamless workflow integration. Implementation should be guided by the socio-technical model, which acknowledges that successful, safe technology requires simultaneous attention to hardware/software, clinical content, human operators, workflow, internal policies, and the external regulatory environment [57]. Recommendations: Establish permanent, empowered interdisciplinary EHR optimization committees comprising frontline clinicians (physicians, nurses, therapists), pharmacists, lab technicians, and human factors engineers. These committees should conduct regular, structured usability testing and workflow analyses to identify and rectify points of friction, burden, and risk. Procurement and upgrade decisions must be heavily weighted towards vendor systems that demonstrate superior usability and interoperability, not just functional checklists.
2. Engineer Intelligent Clinical Decision Support (CDS) and Notification Systems. CDS and alerts must evolve from being a source of fatigue to becoming a trusted, intelligent safety net. This requires moving from voluminous, generic alerts to context-aware, tiered, and role-specific intelligence. Recommendations: Implement "smart alerting" protocols that consider patient context (e.g., diagnosis, medications), user role, and clinical scenario to suppress low-value alerts and escalate high-risk ones through appropriate channels (e.g., critical lab to covering physician's secure mobile device). CDS should be evidence-based, actionable, and integrated directly into the workflow, such as prompting for a reason when overriding a high-severity warning. Furthermore, create unified interdisciplinary dashboards that synthesize key safety data (e.g., fall risk scores, mobility status, critical lab trends, medication safety alerts) into a single, visual overview for the entire care team, fostering shared situational awareness [58, 59].
3. Mandate Standardization of Core Safety Communication Processes. Variability in handoffs and care coordination is a known progenitor of error. Efficiency and safety demand the deliberate standardization of key communication rituals, using the documentation system as their backbone. Recommendations: Implement and rigorously enforce a standardized, structured handoff tool (e.g., I-PASS for physician handoffs, SBAR-based tools for nurse and therapist handoffs) that is embedded within the EHR. Completion should be a mandatory step in the transfer-of-care process. Similarly, institute brief, daily interdisciplinary safety huddles at the unit level, focused on reviewing the integrated dashboard, reconciling care plans (especially mobility and fall prevention plans), and explicitly communicating any changes in patient status or goals. These huddles formalize the verbal connection that paper-based or siloed digital notes cannot achieve [60].
4. Prioritize Interoperability and Information Synthesis over Data Storage. The current model of discipline-specific documentation modules must give way to a patient-centric model that promotes synthesis. The goal is to present a coherent narrative, not to house disconnected data fragments. Recommendations: Demand and invest in true interoperability using modern standards (e.g., HL7 FHIR) to break down internal silos between nursing, therapy, and ancillary systems, ensuring all documented data is searchable and accessible in one patient chart. Develop and deploy "problem-oriented" or "patient summary" views that automatically collate all relevant information—vital signs, recent labs, active medications, therapy assessments, nursing concerns—around each active problem on the patient's list. This reduces tab-flicking and supports diagnostic reasoning. For physiotherapy and nursing in particular, develop integrated mobility and safety plans that are co-authored, easily visible, and actionable for all team members [61].
5. Redesign Documentation to Serve Clinical, Not Just Compliance, Needs. To combat note bloat and cognitive overload, documentation practices must be streamlined with a focus on conveying critical thinking and essential information. Recommendations: Lead organizational initiatives to "de-clutter the chart." This involves working with compliance and legal departments to challenge redundant documentation requirements and to promote the use of concise, narrative-driven notes for assessments and

progress. Encourage diagnostic reasoning notes that clearly state "what I think is going on and why," which are invaluable for colleagues. For nursing, advocate for and design intelligent flowsheets that use conditional logic to reduce unnecessary data entry and allow more time for documenting nuanced observations and changes in condition. The principle should be to document what is necessary for safe continuity of care and clear reasoning, not to create a defensive legal document by default [62, 63].

6. Foster a Culture of Shared Accountability and Psychological Safety. No technological or procedural fix will succeed without a congruent culture. Safety is a collective property, and the integrated model requires breaking down hierarchical and professional barriers. Recommendations: Leadership must actively cultivate psychological safety, where any team member (a nurse, a physiotherapist, a lab technician) feels empowered to speak up about documentation discrepancies, unclear orders, or safety concerns without fear of reprisal. Implement structured interdisciplinary morbidity and mortality (M&M) or safety reviews that examine cases through the lens of system failures in documentation and communication, rather than individual blame. Recognize and reward collaborative practices that enhance safety through efficient information sharing [64].

7. Implement Continuous Feedback Loops and Metrics for Improvement. Finally, moving towards an integrated model requires measuring what matters. Metrics should shift from volume-based (notes per day, orders placed) to outcome- and process-based. Recommendations: Develop and monitor safety-sensitive metrics tied to documentation and workflow efficiency. These could include: time from lab result finalization to clinician review, rate of missed critical findings, nursing direct care time vs. documentation time, compliance with structured handoff tools, and fall rates correlated with mobility plan communication. Use data analytics from the EHR itself to identify workflow bottlenecks and high-alert fatigue areas. This data should feed back into the optimization committees, creating a continuous cycle of measurement, feedback, and redesign [65, 66].

Conclusion

This comprehensive analysis substantiates the central thesis that patient safety in internal medicine units is inextricably and dynamically linked to the efficiency of the administrative-medical documentation backbone and its integration with frontline clinical practices. The evidence demonstrates that inefficiencies in these systems are not merely operational inconveniences but constitute direct, modifiable risk factors for patient harm. The documentation burden on nurses erodes the essential capacity for clinical surveillance and therapeutic presence. Disconnected physiotherapy documentation undermines coordinated fall prevention strategies. Inefficiencies in the laboratory data pipeline from order to decision directly compromise diagnostic accuracy and timeliness. Crucially, the most profound risks emerge in the interdisciplinary gaps—the points where information silos, asynchronous workflows, and alert fatigue cause critical data to be missed or misunderstood.

Therefore, the path to enhanced safety necessitates a fundamental paradigm shift from fragmented, discipline-specific optimization to the deliberate engineering of an Integrated Safety Model. This model requires a concurrent and synergistic focus on four pillars: (1) the adoption of socio-technical design principles to create intuitive, cognitive-supportive health IT that serves the clinical team; (2) the implementation of standardized, structured communication protocols embedded in workflow to ensure reliable information transfer across disciplines; (3) the intelligent synthesis of information within EHRs to present a coherent patient narrative that supports shared situational awareness; and (4) the cultivation of a culture of psychological safety and shared accountability, where every team member is empowered to act on safety-related information. Investing in this holistic integration is ultimately an investment in preventing the human and financial costs of adverse events. By fortifying the connections between documentation, practice, and people, internal medicine units can evolve into more reliable, resilient systems where safety is continuously engineered into the very fabric of care delivery.

References:

1. Kent P, Morrow K. Better documentation improves patient care. *Nurs Stand* 2014;29:44–51. 10.7748/ns.29.14.44.e9267
2. Nakate GM, Dahl D, Petrucci P, et al. The nursing documentation dilemma in uganda: neglected but necessary. A case study at mulago national referral hospital. *OJN* 2015;05:1063–71. 10.4236/ojn.2015.512113
3. Seetharama S. Information generation and utilisation in hospitals: an analytical study. *SRELS Journal of Information Management* 1980;17:10–8.
4. Bargaje C. Good documentation practice in clinical research. *Perspect Clin Res* 2011;2:59–63. 10.4103/2229-3485.80368
5. Ball JE, Murrells T, Rafferty AM, et al. “ care left undone ” during nursing shifts: associations with workload and perceived quality of care. *BMJ Qual Saf* 2014;23:116–25. 10.1136/bmjqqs-2012-001767
6. Avoka Asamani J, Delasi Amenorpe F, Babanawo F, et al. Nursing documentation of inpatient care in eastern Ghana. *Br J Nurs* 2014;23:48–54. 10.12968/bjon.2014.23.1.48
7. Collins SA, Cato K, Albers D, et al. Relationship between nursing documentation and patients’ mortality. *Am J Crit Care* 2013;22:306–13. 10.4037/ajcc2013426
8. Considine J, Trotter C, Currey J. Nurses’ documentation of physiological observations in three acute care settings. *J Clin Nurs* 2016;25:134–43. 10.1111/jocn.13010
9. Kebede M, Endris Y, Zegeye DT. Nursing care documentation practice: the unfinished task of nursing care in the University of gondar Hospital. *Inform Health Soc Care* 2017;42:290–302. 10.1080/17538157.2016.1252766
10. Akhu-Zaheya L, Al-Maaitah R, Bany Hani S. Quality of nursing documentation: paper-based health records versus electronic-based health records. *J Clin Nurs* 2018;27:e578–89. 10.1111/jocn.14097
11. Seetharama S. Information generation and utilisation in hospitals: an analytical study. *SRELS Journal of Information Management* 1980;17:10–8.
12. Motea P, Rantetampang A, Pongtikuc A. The factor relates to the job performance of nurses with health nursing documentation at paniai general hospital papuan province. *Int J Sci Basic Appl Res (IJSBAR)* 2016;30:231–47.
13. Li? Not applicableal. This line appears to be non-sensical for citation lists and has been omitted to preserve readability.
14. Le wanda ws ky S, Ecker UKH, Seifert CM, et al. Misinformation and its correction: continued influence and successful debiasing. *Psychol Sci Public Interest* 2012;13:106–31. 10.1177/1529100612451018
15. Torki S, Tavakoli N, Khorasani E. Improving the medical record documentation by quantitative analysis in a training Hospital. *J Earth Environ Health Sci* 2015;1:22. 10.4103/2423-7752.159923
16. Krishna R, Khyati G. Nursing errors in the documentation: a review. *Ruas-Uas JMC* 2017;3:1–5.
17. Gottschalk A, & Flocke SA (2005). Time Spent in Face-to-Face Patient Care and Work Outside the Examination Room. *The Annals of Family Medicine*, 3(6), 488–493.
18. Grinspan ZM, Banerjee S, Kaushal R, & Kern LM (2013). Physician Specialty and Variations in Adoption of Electronic Health Records. *Applied Clinical Informatics*, 04(02), 225–240.
19. Ammenwerth E, & Spötl H-P (2009). The Time Needed for Clinical Documentation versus Direct Patient Care: A Work-sampling Analysis of Physicians’ Activities. *Methods of Information in Medicine*.
20. Banner L, & Olney CM (2009). Automated Clinical Documentation: Does It Allow Nurses More Time for Patient Care? *CIN: Computers, Informatics, Nursing*, 27(2), 75–81.
21. Campanella P, Lovato E, Marone C, Fallacara L, Mancuso A, Ricciardi W, & Specchia ML (2016). The impact of electronic health records on healthcare quality: a systematic review and meta-analysis. *The European Journal of Public Health*, 26(1), 60–64.

22. Christino MA, Matson AP, Fischer SA, Reinert SE, DiGiovanni CW, & Fadale PD (2013). Paperwork Versus Patient Care: A Nationwide Survey of Residents' Perceptions of Clinical Documentation Requirements and Patient Care. *Journal of Graduate Medical Education*, 5(4), 600–604.
23. Creswell JW, & Creswell JD (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications.
24. Donaldson MS, Corrigan JM, Kohn LT, & others. (2000). To err is human: building a safer health system (Vol. 6). National Academies Press.
25. Freivalds A, & Niebel B (2013). Niebel's Methods, Standards and Work Design (13th ed.). New York, NY: McGraw-Hill.
26. Hakes B, & Whittington J (2008). Assessing the Impact of an Electronic Medical Record on Nurse Documentation Time. *CIN: Computers, Informatics, Nursing*, 26(4), 234.
27. Hammond KW, Helbig ST, Benson CC, & Brathwaite-Sketoe BM (2003). Are Electronic Medical Records Trustworthy? Observations on Copying, Pasting and Duplication. *AMIA Annual Symposium Proceedings*, 2003, 269–273.
28. Health IT Quick Stats. (2018). Retrieved October 11, 2018, from Health IT dashboard.
29. Hripcsak G, Vawdrey DK, Fred MR, & Bostwick SB (2011). Use of electronic clinical documentation: time spent and team interactions. *Journal of the American Medical Informatics Association*, 18(2), 112–117.
30. Jamal A, McKenzie K, & Clark M (2009). The Impact of Health Information Technology on the Quality of Medical and Health Care: A Systematic Review. *Health Information Management Journal*, 38(3), 26–37.
31. Jarvis B, Johnson T, Butler P, O'Shaughnessy K, Fullam F, Tran L, & Gupta R (2013). Assessing the Impact of Electronic Health Records as an Enabler of Hospital Quality and Patient Satisfaction: Academic Medicine, 88(10), 1471–1477.
32. Kruk ME, Gage AD, Arsenault C, et al. High-quality health systems in the Sustainable Development Goals era: time for a revolution. *Lancet Glob Health*. 2018;6:0–252. doi: 10.1016/S2214-109X(18)30386-3
33. Stoumpos AI, Kitsios F, Talias MA. Digital transformation in healthcare: technology acceptance and its applications. *Int J Environ Res Public Health*. 2023;20
34. Manzoor F, Wei L, Hussain A, Asif M, Shah SI. Patient satisfaction with health care services; an application of physician's behavior as a moderator. *Int J Environ Res Public Health*. 2019;16
35. Sfantou DF, Laliotis A, Patelarou AE, Sifaki-Pistolla D, Matalliotakis M, Patelarou E. Importance of leadership style towards quality of care measures in healthcare settings: a systematic review. *Healthcare (Basel)*. 2017;5
36. Babiker A, El Husseini M, Al Nemri A, et al. Health care professional development: working as a team to improve patient care. *Sudan J Paediatr*. 2014;14:9–16
37. Chanturidze T, Obermann K. Governance in health - the need for exchange and evidence comment on "governance, government, and the search for new provider models". *Int J Health Policy Manag*. 2016;5:507–510
38. Varkey B. Principles of clinical ethics and their application to practice. *Med Princ Pract*. 2021;30:17–28
39. Walters JK, Sharma A, Malica E, Harrison R. Supporting efficiency improvement in public health systems: a rapid evidence synthesis. *BMC Health Serv Res*. 2022;22:293
40. Syntellis Perform. Healthcare and Hospital Budgeting: A Complete Guide. Oct 2023. 2023
41. Akinleye DD, McNutt LA, Lazariu V, McLaughlin CC. Correlation between hospital finances and quality and safety of patient care. *PLoS One*. 2019;14:0
42. Britton JR. Healthcare reimbursement and quality improvement: integration using the electronic medical record. *Int J Health Policy Manag*. 2015;4:549–551
43. Hampel K, Hajduova Z. Human resource management as an area of changes in a healthcare institution. *Risk Manag Healthc Policy*. 2023;16:31–41

44. Dubois CA, Singh D. From staff-mix to skill-mix and beyond: towards a systemic approach to health workforce management. *Hum Resour Health*. 2009;7:87
45. CH M, SA M, EB A, AM A. Empowering education: a new model for in-service training of nursing staff. *J Adv Med Educ Prof*. 2017;5:26–32
46. Karaca A, Durna Z. Patient satisfaction with the quality of nursing care. *Nurs Open*. 2019;6:535–545
47. Hughes RG. Patient Safety. 2008. Tools and strategies for quality improvement and patient safety.
48. Quentin W, Partanen VM, Brownwood I, et al. Measuring Healthcare Quality. Copenhagen: European Observatory on Health Systems and Policies; 2019
49. Malinowska-Lipień I, Micek A, Gabryś T, et al. Impact of the work environment on patients' safety as perceived by nurses in Poland—A cross-sectional study. *Int J Environ Res Public Health*. 2021;18(22):12057. doi: 10.3390/ijerph182212057
50. Leone C, Bruyneel L, Anderson JE, et al. Work environment issues and intention-to-leave in Portuguese nurses: A cross-sectional study. *Health Policy*. 2015;119(12):1584–1592. doi: 10.1016/j.healthpol.2015.09.006
51. Tomaszewska K, Kłos A, Majchrowicz B. Influence of work environment on the quality of benefits provided by primary health care nurses. *Journal of Education Health and Sport*. 2017;7(8):1191–1205. doi: 10.5281/zenodo.1039369
52. World Health Organization Forward Program October 2004. World Alliance for Patient Safety. 2004.
53. World Health Organization Resolution 72.6. Global action on patient safety. The Seventy-second World Health Assembly. 2019.
54. El Shafei AMH, Zayed MA. Patient safety attitude in primary health care settings in Giza, Egypt: cross-sectional study. *Int J Health Plann Manage*. 2019;34(2):851–861. doi: 10.1002/hpm.2743
55. Lucas P, Nunes E. Nursing practice environment in primary health care: a scoping review. *Rev Bras Enferm*. 2020;73(6):S0034-7167(2020)0006-00303. doi: 10.1590/0034-7167-2019-0479
56. World Health Organization Patient safety. 2019.
57. Vaismoradi M, Tella S, A Logan P, et al. Nurses' adherence to patient safety principles: A systematic review. *Int J Environ Res Public Health*. 2020;17(6):2028. doi: 10.3390/ijerph17062028
58. Silva APF, Backes DS, Magnago TS, Colomé JS. Patient safety in primary care: conceptions of family health strategy nurses. *Rev Gaucha Enferm*. 2019;40(spe):e20180164. doi: 10.1590/1983-1447.2019.20180164
59. Rodziewicz TL, Houseman B., Hipskind JE. Medical Error Reduction and Prevention. Treasure Island, FL: StatPearls; 2022.
60. Flin R, Winter J, Sarac C, Raduma M. Human factors in patient safety: review of topics and tools. 2009.
61. Ghobashi MM, Ghani El-ragehy HA, Mosleh H, Al-Doseri FA. Assessment of patient safety culture in primary health care settings in Kuwait. *Ebph*. 2014;11(3). doi: 10.2427/9101
62. Pavan NFP, Magalhães ALP, Poncio DF, et al. Patient safety culture in kidney transplant patients in western Santa Catarina. *Acta Paul Enferm*. 2019;32(4):398–405. doi: 10.1590/1982-0194201900055
63. Institute of Medicine. Keeping Patients Safe: Transforming the Work Environment of Nurses. National Academies Press (US); 2004.
64. Mudallal RH, Saleh MYN, Al-Modallal HM, Abdel-Rahman RY. Quality of nursing care: the influence of work conditions, nurse characteristics and burnout. *Int J Afr Nurs Sci*. 2017;7:24–30. doi: 10.1016/j.ijans.2017.06.002
65. Hashim MJ. Patient-Centered Communication: Basic Skills. *Am Fam Physician*. 2017;95:29–34.
66. Bendowska A, Baum E. The Significance of Cooperation in Interdisciplinary Health Care Teams as Perceived by Polish Medical Students. *Int J Environ Res Public Health*. 2023;20. doi: 10.3390/ijerph20020954.