

Comprehensive Investigation of General Medicine, Nursing and Laboratory Medicine for an Integrate Care Opportunity

Awad Bin Fayed Bin Nasser Alshahrani¹, Majed Naif Alotaibi², Dalia Mohammed Alawwam³, Misoon Yahya Redine⁴, Sara Abduh Ali Zalah⁵, Najlaa Makki Abdo Mokli⁶, Nada Mohammed Moharag⁷, Nadia Ahmad Mohammed Mojammeh⁸, Ghaday Eissa Fayyad⁹, Shafiqah Ahmad Mohamad Mogamami¹⁰, Hayat Arraj Mohammed Qatmul¹¹, Salihah Hussain Mohammed Zaidan¹², Reem Eqab Eid Alshammary¹³, Areej Ahmed Yehya Medhwi¹⁴, Abdulaziz Hassan Kosadi Almahdi¹⁵

¹. *Armed forces Hospital Sharurah, Ministry of Defense kingdom of Saudi Arabia*

². *Sharurah armed forces hospital, Ministry of Defense kingdom of Saudi Arabia*

³. *Medical consultations in Jazan Ministry of Health kingdom of Saudi Arabia*

⁴. *Al Malha PHC Ministry of Health kingdom of Saudi Arabia*

⁵. *Al Hakemah PHC Ministry of Health kingdom of Saudi Arabia*

⁶. *Sabia General hospital Ministry of Health kingdom of Saudi Arabia*

⁷. *Prince Mohammed bin Nasser Hospital Ministry of Health kingdom of Saudi Arabia*

⁸. *King Fahd central hospital jizan, Ministry of Health kingdom of Saudi Arabia*

⁹. *prince mohamed bin nasser hospital, Ministry of Health kingdom of Saudi Arabia*

¹⁰. *Health Control Center at King Abdullah Airport Ministry of Health kingdom of Saudi Arabia*

¹¹. *Health Control Center at King Abdullah Airport Ministry of Health kingdom of Saudi Arabia*

¹². *Abu Arish North Health Care Center, Ministry of Health kingdom of Saudi Arabia*

¹³. *Hail Public Health Administration Group Ministry of Health kingdom of Saudi Arabia*

¹⁴. *Sabia General hospital Ministry of Health kingdom of Saudi Arabia*

¹⁵. *Health Control Center at King Abdullah Airport Ministry of Health kingdom of Saudi Arabia*

Abstract

The modern health care functions as an entity with the combined effect of three fundamental components: general medicine, nursing, laboratory medicine. The present comprehensive review will address their interrelatedness and cooperative relationships as well as the synergistic influence of technological advances on patient care. This study covers about 6000 words and analyzes the pedagogical contexts, professional roles, technological developments and ethical considerations that shape both domains. This research indicates that it is not sufficient in health-care to have excellent individual disciplines without the coordinated activity of multidisciplinary teams. This study sheds light on how these three pillars are evolving to address shifts in population health, advances in technology, and transformations of the healthcare system based on current experience, emerging trends, and challenges for the future. The results highlight the fact that it is critical to continue investment in interprofessional education, EBP integration and quality improvement programs to maintain equitable care delivery.

English Keywords:

General Medicine, Primary Healthcare, Nursing Practice, Patient-Centered Care, Laboratory Medicine, Clinical Diagnostics, Interprofessional Collaboration, Healthcare Quality, Medical Education, Clinical Laboratory, Evidence-Based Practice, Healthcare Workforce, Diagnostic Testing, Nursing Education, Team-Based Care, Patient Safety, Medical Technology, Clinical Chemistry, Healthcare System, Professional Ethics, Chronic Disease Management, Preventive Medicine, Laboratory Quality Assurance, Multidisciplinary Teams, Healthcare Integration, Molecular Diagnostics, Holistic Nursing Care, Clinical Decision-Making, Healthcare Innovation, Patient Advocacy, Primary Care, Clinical Practice, Medical Diagnosis, Therapeutic Interventions, Patient Assessment, Nursing Care, Patient Education, Clinical Nursing, Nursing Assessment, Healthcare Advocacy, Laboratory Analysis, Quality Control, Healthcare Coordination, Multidisciplinary Approach, Integrated Healthcare

Introduction

The contemporary health service is one of the most complex and important social institutions of human society, involving different professions to work together in the interest of promoting health, preventing illness, making diagnosis and delivering treatments. In all the specialties of this complex system, three fields are major foundations; general medicine (internal medicine), nursing and clinical laboratory

science. Despite their own unique origins, education tracks, professional identities and practice domains, these fields are inextricably connected by the shared thread of patient care and practicing evidence-based medicine.

General practice, commonly known as internal medicine in North America and occasionally as general medicine, is a branch of medicine which deals with health care of adults, including prevention and treatment of diseases. GPs treat people at the community level, addressing their health needs in a holistic manner throughout all stages, from prevention to referral for one-off and complex conditions. The specialty requires a broad knowledge of pathophysiology, pharmacology, diagnostic reasoning and therapeutic interventions as well as significant technical expertise along with the ability to communicate effectively in making clinical decisions. General medical care is, in most health-care systems around the world, the point of access to efficient and effective use of resources for (acute and) chronic patients. Ranking as the largest healthcare discipline in the world, nursing covers a spectrum of positions from bedside care to health policy development. 24/7 patient surveillance, treatment and teaching to the patients and family members, care coordination between healthcare settings, as well as being an advocate in challenging systems of care. Nursing practice has progressed considerably from its historical origins and is transforming from a task-oriented occupation to a profession that values critical thinking, evidence-based care, and autonomous clinical decision-making. Modern nursing education-trained professionals to be "part of" but not at the expense of other health disciplines.

The diagnostic framework of clinical medicine is laboratory medicine and it has been reported that 70% of the decisions in clinical practice are influenced by laboratory tests. It is a discipline that has several distinct but inter-related branches, which includes clinical chemistry, hematology, microbiology and molecular diagnostics. Medical laboratory professionals analyze biological samples to identify diseases, monitor the effectiveness of treatments, screen for health problems and determine their prognoses. The discipline has undergone a revolution of its own, as it has benefited from technological advances, automation and the addition of artificial intelligence that have provided faster turn-around times, greater accuracy and an expanded capacity for testing. Clinical laboratory practice is mostly invisible to the public, but results are critical for diagnosis and monitoring of patients.

That intersection is what this model of healthcare delivery produces and it efficiently maximizes the benefits each of these disciplines has to offer while addressing their limitations. General practitioners use laboratory findings to confirm presumptions based on clinical criteria, exclude competing diagnoses and assess progression of the disease and responses to therapy. Nurses obtain the samples, interpret a rapid result, acknowledge critical values that require immediate notification of the physician, and inform patients on preparation for testing and interpreting test results. Laboratory scientists maintain specimen also integrity; determine the suitability of a test and validate test also results; report data and communicate findings to clinicians. This joint model embodies the interprofessional practice paradigm considered critical to providing safe, effective and patient-centered care.

However, although the necessity for cooperation among general medicine, nursing and laboratory has been acknowledged numerous obstacles hinder its effective implementation. Professional silos, traditional hierarchy within teams, poor interprofessional education, difficulties with communication and resources can all impede teamwork and affect patient care. In addition, both disciplines confront internal issues of limited resources, burnout, ethical concerns and the necessity to adapt to new medical knowledge and technology that change rapidly. Recognizing these barriers and finding ways to overcome them is a key task for health care systems globally.

It is our hope that this comprehensive study of general medicine, nursing and laboratory medicine as distinct disciplines and as the three interlocking pieces in the health care system will generate positive interest. The study considers the necessary educational preparation for both professions, their practice spectrum and professional responsibilities, technological and methodological advances affecting current scientific practices, and ethical considerations peculiar to each discipline. In addition, this paper explores how these fields are working together, the obstacles to successful interprofessional practice and the efforts to improve teamwork and coordination of care. This study contributes to the ongoing conversation about health care quality improvement and the development of collaborative practice models by synthesizing existing evidence and setting a research agenda for the future.

General Medicine and the Foundations of Clinical Practice

2.1 Historical and Developmental Evolution of the Educational System

General internal medicine debuted as an independent medical specialty in the 20th century, in response to a growing emphasis on specialization and the awareness that broad-based primary care demanded specialized training. There was a time when all physicians were generalists, caring for every patient from newborns to the elderly. But the explosion in medical knowledge after World War II led to an ever-swelling number of specialties, each dedicated to a particular organ system, disease or patient

population. This specialization trend, however, although it led to advances in medical science and its applications was creating fragmentation of care for patients and a lot had been lost from the continuity and coordination that were traditionally present in the physician-patient relationship.

The recognition of general practice as a specialty was an attempt to maintain comprehensiveness and at the same time recognise that "generalists" need special expertise in managing common health problems. General practice was officially recognized as a medical specialty in the UK during the 1950s, and the training of GPs across England is now provided by representative organizations from four separate regions. The course of development in the United States was similar, with family medicine eventually competing on an equal basis with general practice for patients and trainees (although family medicine's approach to patient care was biopsychosocial from its inception) and formal residency training requirements. These changes, which were the result of increasing awareness that provision of high-quality primary care necessitated a set of skills different from those learned in many medical school curricula.

Modern general practitioner (GP) training includes study for an undergraduate degree in medicine, and postgraduate training comprising a three-year residency or four years of vocational training. Undergraduate medical education, which ranges from four to six year programmes across the world, covers basic and clinical sciences including training in at least one major specialty; such as anatomy, physiology, biochemistry, pathology, pharmacology and microbiology. Studying medicine Medical students in practice encounter patients under supervision as part of hospital and community settings, where they learn by taking medical histories, performing physical examinations, interpreting tests, considering differential diagnoses and formulating treatment plans. Students are taught evidence-based medicine, clinical reasoning, professional ethics, communication and cultural competency.

Postgraduate Training After graduating from medical school, general practitioners complete postgraduate training programs that include supervised clinical experience in primary care in order to be licensed. In family medicine residencies, which usually take three years to complete, doctors also gain skills in caring for both acute and chronic conditions throughout a person's life span from prenatal care through geriatrics. Training rotations take residents to different clinical settings such as ambulatory clinics, emergency rooms, inpatient facilities and community health centers. Residents have opportunity to gain experience in preventive medicine, chronic disease management, minor procedures, integration of behavioral health and care coordination. This training also provides continuity of care so that residents can form longitudinal relationships with patients and see health in the context of family, community. Beyond these, residents are trained for practice management and quality improvement in health care systems to better equip them for the more administrative and leadership roles that will be required of primary care physicians going forward.

2.2 Practice Scope and Clinical Duties

Continue reading GPs are the main port of call for health services and manage 80-90% of problems people have with their health without referral to specialists. They provide a broad range of services for health promotion, disease prevention, acute and chronic illness management and provision of specialized care. This comprehensive role requires a broad spectrum of medical knowledge and clinical judgment to decide which conditions can be managed in primary care, and those that require specialist referral. For generalists such as GPs, there is a need to keep pace with developing clinical guidelines and treatments, as well as across the breadth of public health advice in all fields of medicine; in so doing, they need to be committed lifelong learners engaged in professional development.

Preventive medicine is an important aspect of family practice, whether it includes immunization or health screening; counseling about lifestyle changes; and recognition of future risk factors for disease. Documented evidence shows that preventive services delivered in primary care can decrease the morbidity and mortality from a variety of conditions such as cardiovascular disease, cancer, diabetes, and infectious diseases. General practitioners carry out or request the execution of appropriate age-related screening tests -including measurement of arterial blood pressure, cholesterol, mammography, colonoscopy and vaginal cytology-. They also advise on quitting smoking, cutting down on alcohol, healthy eating, exercise and preventing injury. To raise awareness about these preventive activities and motivate them to make behavioral changes, patients must be efficiently communicated with about their conditions, barriers of living healthy lives must be overcome rather than merely treated, and therapeutic relationships that motivate continued participation in healthcare should be developed.

Chronic disease management is becoming an ever more significant part of general practice as our populations age and the numbers of people with conditions such as diabetes, hypertension, asthma and heart disease increase. General practitioners develop an integrated strategy of care comprising drug treatment, life style counselling, complication screening and titration of therapy according to clinical response. Organized systems of care (e.g., patient registries, enrollment in a recall system for periodic monitoring, standardized protocols to adjust medications) ideally involve a team including nurses,

pharmacists, dietitians and other members of the health care team. Evidence indicates that well-organized primary care practices are not only equivalent to specialty clinics in meeting the needs of many chronically ill patients but have such advantage as comprehensive care, ready access, and cost-reduction.

The acute care of the ill is a core element in GP, where GPs diagnose and treat infections, trauma and sudden presentations that require immediate evaluation. The general practitioner needs to make a quick severity assessment, differentiate which situations are in need of urgent intervention and which can be managed as an out-patient, and initiate treatment. And this clinical decision-making is the application of a combination of sources (Recommendations, RCT and Cohort Studies) with patient history and both physical and diagnostic examination. Uncertainty in diagnosis is a core skill in general practice, as most patients present with undifferentiated symptoms that could be due to serious disease or benign, self-limited illness.

2.3 "Technology Integration and Evidence-Based Practice".topAnchorIntegration of Technology and Evidence-Based Practice.

There has been a technological revolution in general medical care over the last few decades as electronic health records (EHR) and telemedicine, clinical decision support systems, mobile applications for health (mHealth), etc. have been integrated into clinical practices. EMRs allow for systematic documentation of patient encounters, as well as sharing information between providers, enabling monitoring and care quality by utilizing data analytics, and creating systems with clinical support. Such systems provide notifications about drug interactions, remind practitioners of past-due preventive services, and offer access to evidence-based clinical guidelines at the point-of-care. Yet, there are challenges associated with electronic health records, such as screen-based interaction potentially hindering patient-provider communication [9], documentation burden leading to clinician burnout and information overload [10], and concerns about data safety and patient privacy.

The field of telemedicine has grown exponentially, especially with the onset of the COVID-19 pandemic where it presented a baby step opportunity out for patients to conveniently seek medical consultation without spending commute time, arranging child care or being at work. Family physicians see patients virtually for everything from medication management and chronic condition checks to mental health care and taking stock of minor acute concerns. Telemedicine is associated with patient satisfaction and clinical outcomes equivalent to traditional office visits for select pathologies, although it may not be appropriate for conditions requiring physical examination or procedures. Inclusion of remote monitoring devices such as blood pressure monitors, glucometers and wearable fitness tracking continues to broaden general practice's scope into everyday patient life for more frequent collection of data and immediate adjustment of interventions.

Evidence-based practice is the fundamental organizing principle of clinical judgement in contemporary general medicine; it brings together the best available research with experience and patient values. Primary care providers need to be able to critically appraise the medical literature, have knowledge about research methodology, interpret statistics results and apply all this information to their patient populations taking into account patients' individual circumstances and values. Clinical practice guidelines are developed by professional organizations to assist health care providers in the management of common conditions, based on research evidence and expert consensus. But application of guidelines requires professional decision-making because (a) such guidelines will not cover every clinical presentation; (b) patients commonly have multi-morbidities that call for individualized strategies to manage them and (c) the most recent evidence is not necessarily included in, or consistent with, existing recommendations. Striking the balance between evidence-based adherence and personalised patient care that respects individual preferences and patient autonomy is an ongoing challenge in general practice.

Nursing: The Essence of the Profession

3.1 Professional Evolution and Learning Trajectories

Early nursing was an undefined, woman-centered activity carried out in the home environment, and more than any other profession today "whatever else it might be over-wrought with superfluous protection, [women] have to a certain extent also had freedom" (Airault 1987:1873:186) We will call this form of practice non-professional practice. Florence Nightingale began training nurses in the mid-19th century emphasizing sanitation, patient observation and systematic care of the sick. Changing nature of nursing education In the 20th century nurse education in Scotland was offered on two levels, whether it were registered nurses or not at that time. The degree began as the post-registration degree but leading to just a title of a Bachelor (with honours).

Modern nursing programs have entrance at a variety of levels, from diploma to associate degree to bachelors (RN) and beyond. There has been a trend towards the BSN as the preferred educational

requirement with professional organizations calling for baccalaureate preparation as at least that required to practice professional nursing. Baccalaureate programs combine liberal arts education and nursing science to enable graduates to practice in a complex healthcare system, continue their education through graduate study, engage in evidence-based practice, quality improvement, and provide culturally competent care. The program's coursework includes nursing theory, pathophysiology, pharmacology, health assessment, practice across the life span, community health and psychiatric-mental health nursing as well as professional ethics.

Beyond undergraduate training, the nursing profession provides numerous options for graduate education such as master's and doctorate degrees, as well as advanced certifications. Advanced practice registered nurses, which, in addition to nurse practitioners, include clinical nurse specialists, nurse anesthetists and nurse midwives – finish graduate education that enables them to assume more nuanced roles such as diagnosing illnesses and prescribing medication or focusing on patient populations. The Doctor of Nursing Practice programs prepare nurses for leadership roles in practice and system improvement, while Doctor of Philosophy programs produce nurse-scholars who generate evidence to inform nursing science. This diversity of nursing education makes it possible for nurses to find a career path that meets their professional needs and personal desires, providing initial preparation across a wide spectrum of potential integrative roles.

3.2 Nursing Functions and Contribution to Patient Care

Nurses are multi-disciplinary professionals who have surpassed the point of life giving drugs and statistics. The practice of nursing includes assessment, diagnosis, planning, implementation and evaluation of the patient responses to health problems and treatment. Nurses act as patient advocates to allow preferences and values of patients to direct their care, to provide clear information for consent and to deliver care in a way that honors human dignity. The advocacy function is especially important for vulnerable groups such as children, the elderly, cognitively impaired individuals, and patients who experience language or cultural obstacles to accessing health care.

the holistic view Holistic assessment is a fundamental nursing skill; nurses need to gather as much appropriate information as possible to assist in fully understanding patients' physical, mental, social-cultural and spiritual state. This appraisal goes beyond focusing on illness to encompass the impact of disease on day-to-day functioning and relationships, quality of life, and ability to perform self-care. Nurses recognize those realer, potential issues that aren't part of the medical model as such, but are incredibly important for patient help and recovery." For instance, nurses screen for presence of low health literacy, inadequate social support, housing instability, food insecurity and financial inability to adhere to medication regimens as these are known determinants of health outcomes.

Another important role for nurses is care coordination, which is significant in the context of fragmented healthcare services in many countries. Nurses are crucial group communicators, as they mediate between doctors, specialists, therapists, social workers and other team members to keep care plans coherent and make sure all the individuals involved have important information. Throughout transitions of care such as admission to and transfer between units, among settings, or discharge from hospital to home or other facilities, nurses are central in assimilating patients and families, coordinating services required by patients and families at their new setting, reviewing medication reconciliations, determining follow-up visits. Sources of evidence show that effective nursing participation in coordinating care decreases adverse events, preventable readmissions and medication errors and enhances patient satisfaction and outcomes.

Patient and family teaching is a major aspect of nursing care, with nurses instructing patients about disease process, treatment protocol (such as IV infusions or cancer chemotherapies), drug effects and side effects, home self-care interventions, symptom control measures, and when to notify the healthcare provider. Nurses have responsibility for evaluating learning needs and readiness, individualizing instruction based on a patient's educational level and type of learner, utilizing the teach-back technique to validate comprehension, and furnishing written material that supplements verbal instruction. Nurses also teach families how to help patients recover, spot warning signs that require intervention and manage the emotional and practical aspects of an illness. Such an educational role is crucial to enhancing patient activation, self-management capacity and avoidance of early readmissions from clinical settings into the community.

3.3 Challenges and the Innovations Relating to Nursing Practice

Nursing continues to experience major workforce issues, including workforce shortages, high turnover and burnout rates and violence in the workplace. Understaffing also puts patients at risk, as evidenced by research that has identified strong correlations between nurse-to-patient ratios and adverse outcomes such as mortality, failure to rescue, healthcare-acquired infections and medication errors. High levels of work overload can lead to nursing burnout, which comprises emotional exhaustion, depersonalization, and decreased personal accomplishment. Burnout takes a toll on not only nurses'

well-being but also their work-related errors, patient satisfaction and decision to leave the bedside or nursing altogether. Workplace violence, as applied to this proposal, can also add stress and create havoc in an already stressful workplace where a substantial proportion of nurses function.

Meeting the needs of such employees necessitates multifaceted strategies, involving appropriate staffing levels that enable nurses to meet patients' and clients' health care needs in positive practice environments with opportunities for professional growth, competitive compensation and organizational cultures that recognize their contributions to improving public health and promoting optimal patient outcomes while supporting their well-being. Magnet designation, one program recognizing healthcare organizations as having excellent nursing care, evidence-based practice cultures, and positive work environments may offer a framework for organizational improvement. Assessment Magnet hospitals are shown to have better patient outcomes, higher nurse job satisfaction, and lower turnover than non-Magnet hospitals. The principles of Magnet; transformational leadership, structural empowerment, exemplary professional practice, new knowledge and innovation and empirical quality results provide direction for healthcare organizations looking to create work environments in which nursing excellence flourishes. Nursing practice is being increasingly moulded by technological advances, with potential for both good and harm. The widespread implementation of electronic health records (EHRs) has led to systematic noting and accessibility of information, but it also limits direct patient interaction due to documentation burden and screen time. Smart pump technology enhances the safety of IV medications via dose error reduction systems and EHR interfacing, but nurses should continue to be alert about possible technology failure or override. Bedside monitoring facilities allow for continuous monitoring of patients' vital signs and prompt the nursing staff by sounding an alert when a condition is observed to be out of normal range, but experiencing alarm fatigue using alarms that are activated at high rates for non-critical conditions, is the current problem within this system. They have competencies in manning more sophisticated medical machines without losing sight of the fundamental meaning of nursing, which is a relationship between human beings – not between nurses and high tech."

Laboratory Medicine: The Diagnostic Foundation

4.1 Discipline Context and Analytical Frameworks

Laboratory medicine is the investigation of clinical specimens in order to obtain information that will aid in the diagnosis, monitoring, or treatment of disease. This discipline functions using a variety of sub-specialized, interrelated laboratories, such as clinical chemistry (the area of testing that looks at blood and body fluids for chemicals), hematology (testing to look at the types of cells in the blood and clotting factors), microbiology (identifying bacteria or fungi that may be causing illness and determining what sort of antibiotic would override them in a culture/sensitivity organism growth test.), immunology (blood tests to determine immune status) and molecular diagnostics (testing genetic material such as DNA). Every subdiscipline has particular knowledge, appropriate analytical methods, and specific quality control systems to ensure the accuracy and reliability of results.

Clinical chemistry laboratories usually analyze hundreds or... thousands of components of all types in blood, plasma, and other body fluids.such as metabolic products) among which: glucose and other sugars electrolytes (Na +, K +) kidney function LFT cardiac markers fatty acids hormones therapeutic drugs toxic substances These assays used in this process are all based on different analytical methodologies such as spectrophotometry, electrochemistry, immunoassays and chromatography. Clinical chemistry is transformed by automation, through the introduction of high-throughput analysers able to process several hundred essay per hour, with minimal manual handling. Random access and continuous access analyzers to give flexibility in scheduling routine tests as well as urgent specimens. Quality management systems enable to guarantee the correctness of the analysis by using calibration, quality control materials (QC), proficiency testing and on-going surveillance of performance.

Hematology labs conduct blood cell counts, morphology and function to aid in the diagnosis of anemias, leukemias, clotting disorders and infectious diseases. Automated hematology analysers count and classify blood cells using impedance, light scatter or fluorescence. These instruments produce screening CBC results within minutes and any abnormal result is being flagged for microscopic review by a trained technologist or pathologist. Tests for coagulation evaluate the function of blood clots and are important in the management of anticoagulated patients, the workup of patients with bleeding disorders, and during surgical procedures. Bedside coagulation testing results in operating rooms and anticoagulation clinics provide rapid turnaround time for changing treatment.

Microbiology labs identify the bacteria, fungi, viruses and parasites responsible for infections; then cloud-based solutions help doctors figure out which antimicrobial agents successfully treat those organisms. The culture procedure used to be time-consuming involving the growth of organism on select media followed by performing biochemical tests for identification, that usually took days before results could be obtained. Molecular techniques, such as polymerase chain reaction (PCR) have

heralded a revolution in originally micromethods, vastly speeding up microbiological testing – days rather than hours. Fast molecular diagnostics are especially useful in time-sensitive diseases such as sepsis, meningitis or respiratory infection where timely and correct antimicrobial therapy dramatically influences the prognosis. Antimicrobial susceptibility testing (AST) helps to direct useful treatments and antimicrobial stewardship to maintain antibiotic activity and combat resistance.

4.2 Quality Control and Regulatory Compliance

Laboratory medicine practices within highly regulated environments where there are rules to govern the quality of tests, patient safety and results accuracy. All laboratories in the United States that perform testing on human specimens are regulated under the Clinical Laboratory Improvement Amendments (CLIA), which set quality standards for laboratory facilities, personnel, performance of quality control and proficiency testing, and inspections. Laboratories need to be certified according to the level of complexity of tests they perform, are submitted to annual onsite inspections by recognition authorities or national government agencies, are enrolled in external quality assurance testing proficiency programs where their performance is compared with that of other laboratories, and must have a detailed quality system that addresses all areas of laboratory activity.

Laboratory medicine QM comprises the entire TTP, from the preanalytical to analytical and postanalytical steps. The preanalytical phase, from test order to the start of analysis, is the phase with highest risk of errors. Preanalytical factors influencing the result include patient preparation, specimen collection method, sample handling & Transport and sample processing. Laboratories are required to establish processes to deal with these parameters, including written specimen-collection instructions, suitable collection devices, the need for proper labeling of specimens with patients' information and temperature control during transportation as well as time (timeliness) upon which specimens should be processed after being collected. Hemolysis, lipemia, and non adequate collection of the specimen are usual pre-analytical problems that can lead to false result or test refusal.

The analysis phase includes the measurement and related quality assurance measures to maintain satisfactory accuracy and precision of results. Laboratories measure quality control materials of known value with the patient sample, comparing the observed value of each against its expected range, to check the performance and calibration of an analytical system. When values from quality control fall outside the acceptable range, laboratories identify problems, correct them and health care workers confirm that the system is back in good working order before patient results are reported. Calibration with materials of known values traceable to reference methods or standards guarantees measurement precision. Laboratories provide external quality assessments where they are sent blinded specimens to analyze with results published and compared between laboratories to detect systematic errors and trends in long-term method performance.

After results are obtained, the results must be verified, interpreted, reported, and used in the laboratory information. Laboratorians conduct a review of results for clinical reasonableness, scanning for values that do not fit with what is known about the patient's diagnosis, that appear out of range compared to other testing performed, or are outside cutoffs identified by practice partners as needing immediate communication to a clinician. Critical value policies define limits to serious results that should be immediately notified to healthcare professionals. Laboratory information systems support electronic transmission of results to EHRs, allowing rapid access for clinicians and providing writing on-the-wall. Interpretive comments made by pathologists or laboratory directors assist clinicians in understanding complex results, identifying any limitations or interferences with interpretation and in establishing further testing.

4.3 Technological improvements and future directions

The field of laboratory medicine is undergoing continuous change as a result of new technologies, and numerous transformative trends are being played out within the area. Point-of-care (POC) testing refers to laboratory tests that are performed at or near the patient, usually at the bedside, physician's office, or even in a patient's home which can provide rapid clinical decision-making during an appointment. Glucose meters, handheld blood gas analyzers, palmtop coagulation monitors or rapid antigen tests can be used for testing outside centralized laboratories. Whilst point of care testing is convenient and rapid, the achievement of quality comparable to central laboratories will require adequate training of non-laboratory staff performing tests, strong qc programmes and connectivity between point-of-care devices and LISs for documentation of results and oversight.

Mass spectrometry has become a critical analytical tool for the clinical laboratory that allows accurate quantification of many analytes, such as drugs, hormones, vitamins, metabolites and proteins. In contrast to the classical immunoassays, mass spectrometric analysis has the advantages of being specific, able to measure multiple molecules concurrently and not susceptible to cross reactivity problems with antibodies. LC-MS/MS has been established as reference method for a multitude of compounds and is achieving routine status in the clinical laboratory. As the mass spectrometry

infrastructure increasingly automates and user-friendly interfaces simplifies the systems, this technology is spreading through clinical labs to back up personalized medicine campaigns that demand accurate adaption of biomarker levels.

Molecular diagnostics is among the most rapidly expanding areas in laboratory medicine, fueled by increasing knowledge of disease-related molecular mechanisms and the rise of targeted therapies that demand companion diagnostic tests. Advances in the next-generation sequencing (NGS) technologies allow comprehensive analysis of genes for mutations, copy number alterations, and structural rearrangements that can be useful for cancer diagnosis, prognosis, therapy selection. Pharmacogenomic testing analyzes genetic factors that influence how a drug is metabolized, enabling clinicians to tailor a patient's drug regimen and dose. Noninvasive prenatal testing (NIPT) examines fetal DNA found in the mother's blood, allowing chromosomal abnormalities to be identified without the risk of invasive test procedures. With declining costs and streamlined analytical workflows, molecular testing is gaining wider acceptability and moving from the domain of reference laboratories to that of routine clinical laboratory services.

AI and ML applications in laboratory medicine span from image analysis to result interpretation and clinical decision support. Digital pathology coupled with machine-learning algorithms is used to identify cancer cells in tissue samples, measure biomarkers and classify subtypes of disease as well or better than human pathologists. Algorithms scan laboratory results for patterns that indicate likely sepsis development or that a patient might be at risk of acute kidney injury, or to order additional follow-up tests to disambiguate tests with ambiguous results. Although the future prospects of AI in laboratory medicine are bright there are challenges such as algorithm validation, introduction to clinical use, regulatory needs and keeping human expertise while employing machines that need constant attention.

Interprofessional Collaboration and Integration

5.1 Models of Team-Based Care

Collaborative practice amongst health care providers is increasingly necessary for the implementation of effective healthcare and described as when multiple health workers including students, from different professional backgrounds provide comprehensive services to patients by working with patients, family, caregivers and communities (WHO 2010). Models such as teams and inter-professional teamwork consider that the complexity of contemporary healthcare does not exceed any particular practitioner's capability & good outcomes are more effectively achieved through a shared effort with multiple professional views or skills. Studies show that interprofessional teamwork leads to improved patient outcomes, increased satisfaction among patients, reductions in medical errors and healthcare costs, lower staff turnover rates and higher satisfaction for health care workers.

In primary care, medical homes are models of team-based care that encompasses general medicine, nursing, and other appropriate disciplines to provide patients with a full range of preventive, acute and chronic heath services and support. Patients in this model develop relationships with primary care teams, not just single physicians. Team members, work together to manage patients' healthcare needs. The team holds huddles to discuss scheduling, details about upcoming appointments and any complicated patients in need of coordination so members have clear delineation of work required within the care plan. When employed, EHRs that are accessed by all members of the team facilitate communication and coordination of care. Evidence shows well-implemented medical home models improve chronic disease outcomes, add to the flow of preventive care, reduce ED visits and hospitalization, and do so while keeping costs in check.

Interprofessional hospital rounds engage physicians, nurses, pharmacists, therapists, social workers and other providers in establishing care plans. Unlike the serial communication model where each team member speaks separately to the physician, on interprofessional rounds all team members hear the same information and can share their perspectives, voice concerns, and collectively come up with plans of care that address patients' needs in multiple dimensions. Studies demonstrate structured interprofessional rounds such as this enhance team communication, reduce length of stay, decrease adverse events and improve patient/family understanding of the care plan. Bedside rounding with patients and families additionally augments these gains by promoting patient preference-concordant care plans and directly educating patients about their conditions and treatments.

Multidisciplinary tumor boards are an example of interdisciplinary interaction in subspecialty care, where medical oncologists, surgical oncologists, radiation oncologists, pathologists, radiology personnel 4, nurses and others meet to review diagnoses of individuals with cancer cases and develop treatment recommendations. Laboratory medicine is integral to these decisions through pathology reports characterizing tumor subtype and protein expression, molecular testing that can uncover actionable mutations when appropriate, and the continued monitoring of treatment response with tumor markers and imaging. The review of the complex cases in a highly interdisciplinary context enables

experts from different disciplines to set up therapy strategies, which take into account all relevant aspects and reflect the latest evidence. Such multidisciplinary team approaches also support individuals with other chronic diseases such as cardiovascular disease, organ transplantation or rare diseases.

5.2 Communication and Coordination of Care Means

Interprofessional collaboration is successful only if there are reliable mechanisms for all team members to communicate with each other in order that accurate information about patient needs can be conveyed in a timely fashion. Structured communication methodologies, such as SBAR (Situation-Background-Assessment-Recommendation) provide a format for delivering essential information clearly and completely, especially at the time of transitions in care where patient responsibility is transferred between providers. SBAR facilitates clear communication so that the receiving provider knows what is happening now (or has just happened), pertinent background, fellow clinician's assessment, and what you want done. The use of standardized communications decreases miscommunication, limits information loss at handoff, and fosters shared mental models for patient care among team members. EHRs act as the central hub, allowing for asynchronous messaging among members of the healthcare team. Doctors record an assessment and plan of care, nurses document vital signs and medications given, laboratory staff input the results of tests performed, therapists describe functional status and progress with rehabilitation. This data is accessible to all team members, who are all aware of the patients' situation as it evolves. However, EHRs have generated problems such as information overload which is a situation where communication is that so much irrelevant information, it feels overwhelming to receive decisions due to sheer volume of data and alert fatigue, exposure-apathy where users are trained not to turn their attention whenever they hear or read a message. Designing and implementing electronic health records to not only facilitate but improve (or at least not inhibit) interprofessional communication continues to be a challenge that needs periodic reassessment and fine-tuning.

Coordination of care platforms and tools are increasingly supporting team-based care, making it simple for clinical members to assign tasks, track items that need to get done, communicate securely with other team members and understand holistic view of where care gaps exist. Population health management solutions help identify patients who have missed preventive services, and poor disease state risk factor or are at-risk for adverse events to allow proactive outreach. Telehealth solutions can facilitate interprofessional teamwork by allowing health care and service teams to meet virtually, specialist consultations without geographical limitations, and remote patient monitoring. As healthcare continues to be delivered across a variety of settings, such as hospitals, clinics, patient's homes and virtual spaces; technologies that are supportive of integrated care by facilitating interoperable data flow and communication are considered essential infrastructure for coordinated healthcare.

For laboratory medicine to integrate into a clinical team, test results must be communicated effectively in the context of what they mean for patients. Notify critical value communication mechanisms exist to facilitate timely contact for life-threatening results such as critically abnormal electrolytes, significantly elevated cardiac markers, or positive blood cultures needing immediate antimicrobial therapy. Turnaround times are often influenced by consultation services offered from lab professionals who can assist in choosing the right tests, interpreting complicated results, understanding limitations of various assays and planning for follow-up testing. NKH reflex testing guidelines, in which licensed facilities automatically conduct certain tests if initial results indicate particular conditions, could streamline diagnostic work-ups making diagnoses more timely. Laboratory dashboards for specimen-processing times, result-turnaround times, and quality metrics enable continuous quality improvement for patient care.

5.3 Collaboration and Its Limitations: Challenges and Ways to Improve

There is an increasing understanding of the importance of interprofessional collaboration but many barriers remain to the practice of effective team working in healthcare. Hierarchies and power differentials, especially between medical and other health care professionals can prevent open communication and cultivate an environment where team members are reluctant to speak up or offer suggestions. The process of training, focused on discipline-based identity and independent practice, may lead to tribal attitudes that are suspicious of, rather than collaborative with, other professional groups. When no one's really clear about who does what, these roles ghost each other - some of the important stuff nobody is doing and some of the tasks are overworked by several people.

The lack of interprofessional education during professional training sustains those barriers. As most healthcare education is delivered in profession-specific programs, there are few opportunities for students across disciplines to learn with, from and about one another's roles and competencies or to build the skills of interprofessional practice. This segregated education leaves professionals who enter practice lacking an experience base and being uncomfortable working in a team context. "To address this need, we must transform health professions education to include interprofessional learning experiences that bring students from medicine, nursing, pharmacy and other allied health fields

together to learn with, from, and about each other; practice collaborative problem solving; and even develop mutual respect for the unique contribution of all professionals.

Interprofessional Education Collaborative competencies offer models for establishing skills to participate in collaborative practices among health care disciplines. A): Values and ethics for interprofessional practice; Roles/ responsibilities in team-based health care (i.e., role clarity); Communication skills for interprofessional practice; Teams/resource sharing/scope. These competencies are increasingly integrated within curricular activities including interprofessional simulation, team-based learning, collaborative clinical practice, and student involvement in projects focused on quality improvement across professions. Longitudinal interprofessional opportunities (where students learn together over time, rather than episodically) are particularly effective in developing sustained collaborative relationships and reinforcing team-based practice norms.

Healthcare organizations support interprofessional collaboration by fostering leadership that prioritizes teamwork, organizational structures promote collaboration rather than impede it, and systems remove barriers to effective communication. Team training programs such as Team Strategies and Tools to Enhance Performance and Patient Safety help develop competencies such as leadership, situation monitoring, mutual support, and communication. Moreover, organizations that measure and reward team performance, departments that organize time and space for team meetings, and systems that take action against professionals exhibiting disruptive behaviors undermine these factors. However, a culture of safety is required as a primary condition in which all team members feel empowered to voice their concerns, especially about patient safety.

6 Ethical Considerations and Professional Responsibilities

6.1 Ethical Principles in Healthcare Practice Professionals

in various fields follow basic ethical principles that govern their behavior and decision-making. Autonomy, the right to make informed decisions about their health care, requires professionals to provide complete, comprehensible information on their diagnoses, prognoses, treatment options and the benefits and risks of each and alternative forms of treatment. In addition, professionals must ascertain that the patient has the cognitive capacity, comprehension abilities, and voluntariness to choose to make informed decisions. The principle becomes complex when patients make choices that professionals view as contrary to their best interests or when families try to override patient choices. To solve these conflicts, the professional must use communication skills, cultural humility, conflict resolution, and, finally, consult ethics.

Value to patients: The ethical principle of beneficence, the duty to act in the best interests and benefit patients through recommended treatment and interventions by healthcare professionals. This principle should inform decisions on the basis of patients' individual circumstances, beliefs and goals in selecting therapies that will afford them the greatest possible benefit with the least harm. But what is a benefit is not always easy to ascertain, such as when treatments extend life if only at poor quality, when the goals of patients and professionals conflict over how far treatment should go or resource-constrained settings make it difficult to deliver 'ideal' care. The balance of aggressive treatment with a potentially limited benefit against quality of life considerations requires thoughtful discussion with patients and families, acknowledgement of prognostic uncertainty, and flexibility to alter plans as the clinical condition dictates.

Nonmaleficence (do no harm) obliges healthcare professionals to manage risks associated with diagnostic and therapeutic procedures, recognize limitations, request consultation if necessary, and acknowledge when treatments are of limited further benefit to patients. This core principle is violated by medical errors, adverse events and healthcare- associated infections that cause moral distress in professionals who through their actions or inaction harm patients. Establishing systems that obstruct rather than punish errors; implementing best safety guidelines based on the evidence; and fostering a culture in which professionals are not afraid to report errors and near-misses, all constitute institutional efforts supporting nonmaleficence.

Amartya Sen addresses the ethical and the empiric in describing justice as respecting equality of access to health care resources and equal treatment regardless of race, ethnicity, sex, income, sexual orientation, etc. Medical providers should check their own biases that may subconsciously affect treatment decisions and support underrepresented groups who suffer health inequities and break down barriers to care where discrimination takes root. Laboratory medicine crosses paths with justice in the selection of tests (cost considerations may determine whether patients get ideal or only adequate diagnostic workups) and patient enrollment in research trials (historically disadvantaged patients have been underrepresented, for example, when generating reference ranges or developing treatment guidelines).

6.2 Professional Accountability and Regulation

The public trust in health care professions is held using stringent professional standards, regulation and accountability systems that also aim to ensure professionals are competent in their roles and maintain ethical practice. Boards set minimum standards for training, they test and evaluate the knowledge and skills of practitioners, and they investigate allegations of professional misconduct. Licensure is a government regulated industry, in part to protect the public from harm. Licensure obligations include continuing education of which, healthcare providers are responsible for staying up-to-date with advances in medical information as well as practice improvements. Some programs are designed to provide lifetime exams while some regions have set up maintenance of certification which follows throughout professionals careers requiring periodic testing and performance review instead of a one-time exam.

Codes of ethics are developed by professional organizations such as medical societies, nursing bodies, and laboratory professionals associations to identify values and norms expected of members. These codes cover such ethical challenges as, but not limited to, maintaining personal integrity; truthful communication (including disclosure of conflicts); respect for professional colleagues; dedication to competence and profession; relationships with patients and pharmaceutical or device companies; and responsibilities to society. In addition, professional societies produce practice standards and guidelines that consolidate evidence into what is believed to be optimal care for particular conditions. Whilst compliance ensures generic recommendations, the practitioner uses his judgement to personalising advice and becomes accountable for it.

Hospitals/Healthcare institutions have credentialing and privileging procedures in place that assess a healthcare provider's qualifications to practice certain types of medicine or care for specific patients. These involve confirming educational, training and licensure credentials, malpractice history and positive reference(s) from peers who know the practitioner's work. Quality is maintained by monitoring patient outcomes, complication rates, compliance with evidence-based practices and peer review in the on-going professional practice evaluation. Perfumed practitioners are reeducated when they cannot demonstrate as good performance quality perspective of care and following safety concerns granting privileges may be restricted or revoked to protect the public.

Mandatory Reporting Obligations Mandatory reporting requires health care providers to report suspected child abuse, elder abuse, specific infectious diseases, colleagues practicing below accepted competency levels and creating patient safety hazards for patients in some jurisdictions, firearm injuries or domestic violence. These reporting duties result in potential conflicts between professional duties to safeguard vulnerable individuals or public health and obligations of confidentiality owed to patients. Practitioners need to be aware of the legal requirements in their own communities and or barriers to reporting: clinical signs may be complicated by more subtle cognitive impairment, reluctance to report on the part of practitioners who risk alienating patients or facing retribution for violations of confidentiality -- yet they also need alternatives if not doing well with identifying problematic behavior.

6.3 Ethical Dilemmas of Modern Health Care

Modern medicine offers many such morally difficult situations that depend on reflection more than on unequivocal right or wrong answers. Decisions about how funding is used, which treatments are provided and to whom, whether scarce medical resources can be allocated equitably (e.g., access to transplantable organs for transplantation) and whether expensive or marginally beneficial interventions are undertaken, contribute to conflicting health system values and stakeholder interests. Healthcare providers as individual decision makers at the bedside who are ordering tests, deciding how aggressively to treat a patient, and how long to keep a patient in hospital, work within larger systems where these decisions collectively determine resource use. Maintaining the balance between serving the best interest of the patient in front of you and stewardship of community resources creates ethical conflict, especially when there is pressure by institutions to manage cost, but professional responsibilities remain focused on achieving appropriate patient care.

End-of-life care prompts the most grave ethical concerns about when to initiate, withhold or withdraw life-sustaining therapy. The developments of medical technology also mean that biological life can be prolonged in circumstances where informed cure is unlikely, leading to situations whereby patients endure protracted processes of dying marked by pain and indignity. Concluding via pawing: Deciding whether or not life-sustaining treatment is what patients would want, when they are incapable of communicating and have not communicated their preferences as advance directives, requires sensitive discussions through surrogate decision-makers. Health care providers find themselves in difficult situations when families request treatments that they deem medically nonbeneficial, when patients' prior expressed wishes conflict with those of their families, or when cultural/religious beliefs impact what are acceptable forms of treatment. Palliative care and hospice provide strategies to add quality of life, comfort, and dignity when cure is out of reach-but these valuable resources often go unused and

patients instead experience brutal treatments they would decline if adequately informed about the prognosis.

Ethical concerns Because genetic and genomic testing reveals information that can have implications for an individual's personal life, professional life and that of their family members, a number of ethical considerations arise about issues such as the privacy of genetic data, including possible genetic discrimination in either employment or insurance decisions by others; duties to disclose information about familial inherited conditions to relatives who potentially may benefit from this knowledge or could be harmed by it; or choices one makes regarding testing for untreatable conditions, especially those in which signs/symptoms don't start until adulthood. Genetic tests should only be ordered under strict conditions and those laboratory practitioners offering genetic tests need to provide adequate informed consent, evoke confidentiality, and acknowledge weaknesses in prediction. Incidental findings, or the discovery of information beyond that originally sought (eg, discovering hereditary cancer risk when tested for other reasons), produce moral quandaries about whether and how to share unanticipated findings. Though genetic testing costs for consumers are falling and access is rising, healthcare professionals and policy makers still must pay attention to issues of equitable access, misuse and informed consent to prevent any possible problems.

The unique ethical issues that arise in AI applications in healthcare include the possibility of algorithmic bias (either perpetuating or intensifying health disparities), inscrutable machine-learning models (obfuscating clinical reasoning both to individuals and populations), liability when an algorithm is involved in an error, and shifts in professional responsibilities and human judgment. To ensure that AI systems, developed using data from majority populations only, generalise fairly across different patient groups, careful validation and monitoring are necessary. Humane oversight: rather than uncritically adopting algorithmic suggestions, transparently reporting the extent to which clinical decision-making involves artificial intelligence as a dimension of ethically significant practice, and safeguarding the caring relational character of healthcare professions amidst growing technological mediation, emerge as key ethical imperatives.

Future Directions and Emerging Challenges

7.1 Healthcare Workforce Sustainability

Shortages in the global health workforce create existential threats to access and quality of health care. And medical access is by no means a given: millions of people are without consistent care, with shortages in physicians, especially in primary care and rural areas. Nurse staffing do not only undermine patient safety and quality but also has the potential to lead the remaining nurses burnt out of the deficiency because they were taking care of more patients. Workforce shortages in testing labs, which have gotten less attention but are equally worrying, endanger the capacity for diagnostic testing that is fundamental to modern medicine. These shortages are due to a constellation of factors, including inadequate educational capacity, a senior-heavy workforce where many are approaching retirement age, inadequate compensation -- particularly for primary care and nursing personnel -- challenging work environments contributing to burnout and early career exit, and for laboratory professionals there is insufficient visibility into our profession for prospective students.

To achieve workforce sustainability, multiple strategies will be needed that are focused on increasing education program output, financial support and access to all types of health care professions programs, development pathways promoting recruitment from other sectors, as well as strategies to enable retention in the workforce by reducing burnout and improving workplace settings. Shifting workloads within the healthcare team through expanded scopes of practice- seeing nurses, pharmacists and others work in accordance with their scope while physicians handle activities that require their advanced training- might be good ways to expand workforce capacity. Efforts to rely on technology, such as automating repetitive tasks, using artificial intelligence to supplement clinical decision-making and adopting telemedicine, to reach populations already limited by low access may help address shortages even if they erode existing workforce capabilities in favor of requirements for technical skills and digital literacy.

Interprofessional education and interprofessional practice models are workforce development and optimization strategies. Through the dissolution of professional silos, ensuring competencies in collaborative practice, and cultivating cultures that recognize and value diverse professional skills contributions, these strategies can increase workforce satisfaction and retention, as well as improve care quality and efficiency. But the realization of these advantages is contingent on radical change across educational establishments and healthcare bodies, regulations and remuneration mechanisms that maintain profession-specific structures and hierarchies. Leadership commitment, ongoing investment and cultural change over a number of years will be required to transform the nature of healthcare workforce development and deployment.

7.2 Precision medicine and personalized healthcare

In precision medicine, medical treatment is customized based on an individual's unique traits such as genetic profile, lifestyle and exposure to environmental hazards rather than focusing on small populations with similar conditions. Technological breakthroughs in genomic sequencing, molecular diagnostics, big data analytics and biological comprehension continue to fuel the use of increasingly sophisticated patient stratification and assigned therapy. Oncology is the standard bearer for precision medicine, where molecular profiling of tumors drives population- and individual-level decisions on whether to pursue targeted therapies, immunotherapies or traditional chemotherapy based on certain mutations or biomarkers that forecast a response. Pharmacogenomics utilizes the principles of precision medicine, based on genetic information for drug choice and dosing decisions that can minimize side effects and enhance clinical benefits.

As the floor of precision medicine, laboratory medicine has developed and applied advanced diagnostic tests for molecular based disease characterization. Ngs platforms are able to analyze hundreds of genes at once, detecting mutations gene fusions

References

1. Bodenheimer, T., & Sinsky, C. (2014). From triple to quadruple aim: Care of the patient requires care of the provider. *Annals of Family Medicine*, 12(6), 573-576.
2. Forrest, C. B., & Whelan, E. M. (2000). Primary care safety-net delivery sites in the United States: A comparison of community health centers, hospital outpatient departments, and physicians' offices. *JAMA*, 284(16), 2077-2083.
3. Interprofessional Education Collaborative. (2016). Core competencies for interprofessional collaborative practice: 2016 update. Washington, DC: Interprofessional Education Collaborative.
4. Laposata, M. (2014). Laboratory medicine: The diagnosis of disease in the clinical laboratory (2nd ed.). McGraw-Hill Education.
5. Mitchell, P., Wynia, M., Golden, R., McNellis, B., Okun, S., Webb, C. E., Rohrbach, V., & Von Kohorn, I. (2012). Core principles & values of effective team-based health care. Discussion Paper, Institute of Medicine.
6. Poon, E. G., Keohane, C. A., Yoon, C. S., Ditmore, M., Bane, A., Levzion-Korach, O., Moniz, T., Rothschild, J. M., Kachalia, A. B., Hayes, J., Churchill, W. W., Lipsitz, S., Whittemore, A. D., Bates, D. W., & Gandhi, T. K. (2010). Effect of bar-code technology on the safety of medication administration. *New England Journal of Medicine*, 362(18), 1698-1707.
7. Reeves, S., Pelone, F., Harrison, R., Goldman, J., & Zwarenstein, M. (2017). Interprofessional collaboration to improve professional practice and healthcare outcomes. *Cochrane Database of Systematic Reviews*, 6, CD000072.
8. Starfield, B., Shi, L., & Macinko, J. (2005). Contribution of primary care to health systems and health. *Milbank Quarterly*, 83(3), 457-502.
9. World Health Organization. (2010). Framework for action on interprofessional education and collaborative practice. Geneva: World Health Organization.