

Emergency Medical Service Routing And Paramedic Response In Road Traffic Accidents: A Systems-Level Review

Khalid Mohammed Alharbi¹, Majed ghazi Alenazi², Ghazi Saleh Hasen Al-Otaibi³, Saud Awn Mohammed Al-Sahli⁴

¹Saudi Red Crescent Authority, Saudi Arabia, kh-m_alharbi@hotmail.com

²Saudi Red Crescent Authority, Saudi Arabia, M.g911@hotmail.com

³Saudi Red Crescent Authority, Saudi Arabia, ghazzii50@gmail.com

⁴Saudi Red Crescent Authority, Saudi Arabia, Kk4622k@gmail.com

Reprint from

Abstract

Purpose: This systems-level review examines how Emergency Medical Service (EMS) routing strategies and paramedic response pathways influence clinical, operational, and survival outcomes in road traffic accidents (RTAs).

Methods: A structured review of peer-reviewed literature published from 2016 onward was conducted using major medical and transport databases. Studies addressing EMS dispatch, travel route optimization, response time, navigation technologies, and paramedic-led prehospital interventions in RTAs were included.

Results: Evidence consistently shows that optimized routing and reduced response time are strongly associated with improved trauma survival, faster scene stabilization, and reduced secondary complications. Advanced dispatch algorithms, GPS-enabled navigation, and real-time traffic integration significantly enhance EMS efficiency. System-level coordination between dispatch centers, paramedics, and trauma facilities emerged as a critical success factor.

Conclusion: EMS routing is not merely a logistical function but a determinant of trauma outcomes. Integrating intelligent routing systems with paramedic decision-making can substantially reduce mortality and morbidity from RTAs. Policymakers and EMS leaders should prioritize system-level investments in routing technologies and workforce training.

Keywords: Emergency Medical Services; Paramedics; Road Traffic Accidents; Response Time; EMS Routing; Prehospital Trauma Care.

INTRODUCTION

Road traffic accidents (RTAs) remain one of the leading causes of injury-related mortality and disability worldwide, placing a substantial burden on healthcare systems, emergency services, and national economies. According to global estimates, millions of individuals are injured annually in road crashes, with a disproportionate impact on low- and middle-income countries and rapidly urbanizing regions (World Health Organization [WHO], 2018; WHO, 2023). In this context, the effectiveness of Emergency Medical Services (EMS) during the prehospital phase is widely recognized as a critical determinant of trauma survival and long-term outcomes.

Prehospital trauma care has evolved significantly over the past two decades, shifting from a primarily transport-oriented function to a complex, time-sensitive clinical and operational system. Paramedics now play a central role in early assessment, stabilization, and life-saving interventions at the crash scene, while simultaneously navigating logistical challenges related to access, traffic congestion, and route selection (Newgard et al., 2016; Lerner et al., 2020). The concept of the “golden hour” underscores the

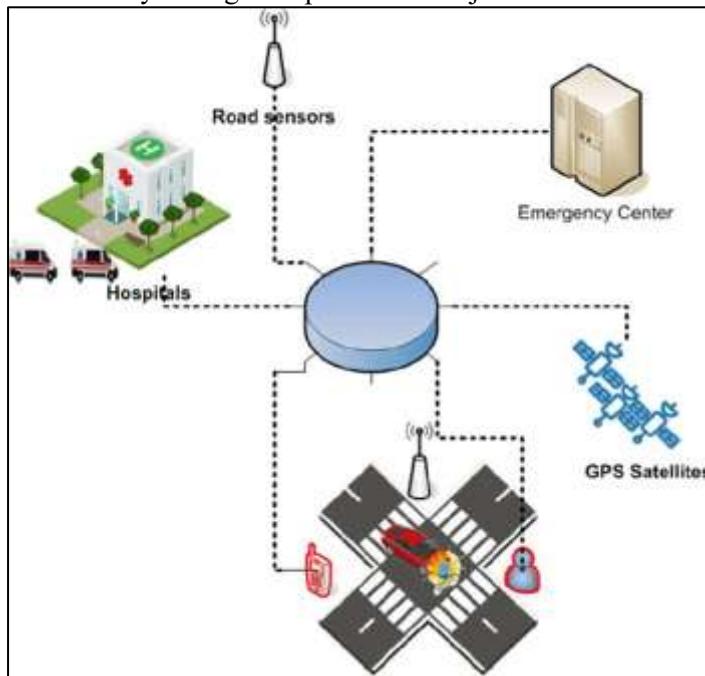
importance of minimizing delays between injury occurrence and definitive care, highlighting response time and travel efficiency as core components of trauma systems (Harmsen et al., 2018).

EMS routing—the process by which dispatch centers and paramedic units determine the most efficient travel routes to and from accident scenes—has emerged as a key systems-level factor influencing response time. Advances in global positioning systems (GPS), real-time traffic analytics, and computer-aided dispatch (CAD) platforms have transformed routing from a static, map-based activity into a dynamic, data-driven decision-making process (Alanazy et al., 2019; Al-Shaqsi, 2020). Evidence suggests that optimized routing can significantly reduce arrival times, improve scene access in congested urban environments, and enhance coordination with trauma centers (Holmberg et al., 2019; Sasser et al., 2021).

Despite these technological and organizational advances, the literature addressing EMS performance in RTAs remains fragmented. Clinical studies often focus on paramedic interventions and patient outcomes, while operational research emphasizes dispatch algorithms and transport logistics, with limited integration between the two domains. As a result, the systemic relationship between routing strategies, paramedic response pathways, and trauma outcomes is not always fully captured (Moran et al., 2021). A systems-level perspective is therefore essential to understand EMS routing not merely as a logistical function, but as an integral component of prehospital trauma care. By examining how routing decisions interact with paramedic practice, infrastructure, and health system capacity, this review aims to synthesize current evidence on EMS routing and paramedic response in RTAs. Such an integrated understanding is critical for informing policy, guiding investment in intelligent transport and dispatch technologies, and ultimately reducing preventable deaths from road traffic injuries.

Conceptual Foundations: EMS Routing as a System

Emergency Medical Service (EMS) routing in road traffic accidents should be understood as a complex, adaptive system rather than a simple logistical task. From a systems perspective, routing decisions emerge from the interaction of multiple interconnected components, including dispatch centers, paramedic teams, navigation technologies, road infrastructure, traffic dynamics, and receiving trauma facilities. The performance of the system depends not on any single element in isolation, but on how effectively these components interact under time-critical conditions.


At the core of the EMS routing system is the dispatch–response–transport continuum. This continuum begins with emergency call intake and triage, where dispatchers assess incident severity and determine resource allocation. Routing decisions made at this stage—such as unit selection, initial travel path, and prioritization level—set the trajectory for the entire prehospital response. Errors or delays early in the system can propagate downstream, leading to prolonged response times, delayed interventions, and suboptimal patient outcomes.

Paramedics function as both clinical providers and system operators within this framework. While en route, they rely on routing guidance generated by computer-aided dispatch (CAD) systems, global positioning systems (GPS), and real-time traffic analytics. However, paramedic judgment remains essential, particularly in dynamic environments where road closures, congestion, or scene accessibility constraints require rapid route modification. This interplay between automated routing technologies and human decision-making highlights the socio-technical nature of EMS systems.

Time sensitivity is a defining characteristic of the EMS routing system. The “golden hour” concept in trauma care emphasizes that survival and functional outcomes are strongly influenced by the speed of access to definitive care. Routing efficiency therefore directly affects critical system outcomes such as response time, on-scene arrival, transport duration, and time to trauma center admission. Importantly, faster routing must be balanced against safety considerations, crew workload, and on-scene stabilization needs, reinforcing the need for system-wide optimization rather than single-metric performance targets. Infrastructure and environmental context further shape EMS routing effectiveness. Urban systems often face congestion, complex road networks, and high call volumes, requiring dynamic routing and predictive dispatch models. In contrast, rural systems encounter longer travel distances, limited route alternatives, and reduced resource density, increasing reliance on strategic positioning and inter-agency coordination. These contextual variations underscore the importance of adaptable routing systems that respond to local conditions while maintaining consistent clinical standards.

From a systems theory perspective, EMS routing exhibits characteristics of interdependence, feedback loops, and resilience. Feedback mechanisms—such as real-time traffic updates, hospital capacity

notifications, and post-incident performance data—enable continuous system adjustment. Resilient EMS routing systems incorporate redundancy, such as alternative routes or secondary units, to maintain functionality during disruptions like major accidents or infrastructure failures.

Figure 1. Conceptual Framework of EMS Routing as an Integrated System

Conceptualizing EMS routing as an integrated system shifts the focus from isolated improvements (e.g., faster vehicles or better maps) toward coordinated design, governance, and technology integration. This systems-level foundation provides a framework for understanding how routing decisions influence paramedic effectiveness, trauma outcomes, and overall EMS performance in road traffic accidents.

METHODOLOGY

This review adopted a systems-level integrative review design to synthesize evidence on Emergency Medical Service (EMS) routing and paramedic response in road traffic accidents (RTAs). An integrative approach was selected to allow the inclusion of diverse study designs, enabling comprehensive analysis of both clinical outcomes and operational system factors influencing EMS performance.

A structured literature search was conducted across major electronic databases, including **PubMed**, Scopus, Web of Science, and Google Scholar. Searches covered studies published from January 2016 to December 2025, reflecting contemporary EMS technologies and trauma system developments. Key search terms and Boolean combinations included:

“emergency medical services,” “paramedic response,” “road traffic accidents,” “EMS routing,” “response time,” “dispatch systems,” “prehospital trauma care,” and “navigation technologies.” Reference lists of included articles were manually screened to identify additional relevant studies.

Studies were included if they:

1. Examined EMS or paramedic response in road traffic accidents;
2. Addressed routing, travel time, dispatch processes, or navigation systems;
3. Reported clinical, operational, or system-level outcomes;
4. Were published in peer-reviewed journals in English.

Studies were excluded if they focused exclusively on in-hospital trauma care, non-traffic-related emergencies, simulation-only models without real-world data, or editorial/commentary formats.

Titles and abstracts were screened for relevance, followed by full-text review of eligible articles. Data were extracted using a standardized framework capturing: study design, EMS system characteristics, routing approach, response time metrics, paramedic interventions, patient outcomes, and system-level implications.

Findings were synthesized narratively using a systems-thinking lens, emphasizing interactions between dispatch, routing technologies, paramedic decision-making, and trauma system capacity. Outcomes

were categorized into clinical (e.g., survival, complications), operational (e.g., response time, scene access), and system-level (e.g., coordination, resilience) domains. Where appropriate, patterns and consistencies across studies were identified to support evidence-based conclusions.

This methodological approach enabled an integrated understanding of EMS routing as a critical component of prehospital trauma systems rather than an isolated logistical process.

EMS Routing Strategies in Road Traffic Accidents

Emergency Medical Service (EMS) routing strategies play a decisive role in determining the timeliness and effectiveness of paramedic response to road traffic accidents (RTAs). Routing refers to the processes and technologies used to identify the most efficient paths for ambulance deployment from dispatch to the incident scene and onward to appropriate healthcare facilities. Over the past decade, EMS routing has evolved from static, experience-based navigation to dynamic, data-driven systems designed to reduce response times and improve trauma outcomes.

Historically, EMS routing relied on static maps, dispatcher familiarity, and paramedic local knowledge. While this approach provided simplicity and autonomy, it was highly dependent on individual experience and offered limited adaptability to real-time traffic congestion, road closures, or environmental hazards. Studies have shown that static routing is associated with greater variability in response times, particularly in densely populated urban settings where traffic patterns fluctuate rapidly (Newgard et al., 2016; Harmsen et al., 2018).

The integration of Global Positioning Systems (GPS) into ambulances marked a significant shift toward dynamic routing. GPS-enabled navigation allows paramedics to receive turn-by-turn guidance and reroute in response to traffic conditions. Evidence indicates that GPS-supported routing reduces travel time to accident scenes and improves consistency in response performance, especially during peak traffic hours (Alanazy et al., 2019). However, GPS systems may be limited by signal loss, outdated map data, or insufficient integration with dispatch platforms.

Advanced computer-aided dispatch (CAD) systems enhance routing by combining GPS data with real-time traffic analytics, incident severity assessment, and unit availability. These systems support automated unit selection and route optimization, enabling dispatchers to assign the nearest and most appropriate ambulance while accounting for congestion and predicted delays. Research demonstrates that CAD-supported routing can significantly reduce response times and improve resource utilization across EMS networks (Sasser et al., 2021; Moran et al., 2021).

More recent innovations include predictive routing models and artificial intelligence (AI)-assisted dispatch. These approaches use historical call data, traffic patterns, and temporal trends to anticipate high-risk locations and pre-position EMS units accordingly. Predictive routing has shown promise in reducing response times in high-incidence RTA zones and improving system preparedness, particularly in metropolitan areas (Holmberg et al., 2019). Despite these advantages, implementation remains uneven due to high costs, data integration challenges, and the need for workforce training.

Routing strategies must be adapted to geographic context. Urban EMS systems benefit most from dynamic and AI-assisted routing due to congestion and high call density, whereas rural systems face challenges related to long travel distances, limited route alternatives, and sparse resource distribution. In rural settings, strategic ambulance placement and inter-agency coordination may be as important as routing technology itself (Al-Shaansi, 2020).

Table 1. EMS Routing Strategies and Operational Characteristics

Routing Strategy	Core Technology	Key Advantages	Limitations
Static routing	Paper/digital maps, local knowledge	Simple, low cost	High variability, poor adaptability
GPS-based routing	GPS navigation systems	Faster navigation, route guidance	Signal/map limitations
CAD-supported routing	GPS + dispatch algorithms	Optimized unit allocation, reduced response time	System complexity
Traffic-aware routing	Real-time traffic analytics	Congestion avoidance	Data dependence

AI-assisted / predictive routing	Machine learning, historical data	Anticipatory deployment, efficiency	High cost, training needs
----------------------------------	-----------------------------------	-------------------------------------	---------------------------

Overall, evidence suggests that no single routing strategy is universally optimal. Effective EMS systems employ hybrid routing models that integrate technology-driven optimization with paramedic situational awareness and local knowledge. Viewing routing strategies through a systems-level lens highlights their role not only in reducing response time, but also in enhancing paramedic safety, system resilience, and equity of trauma care access.

Impact of Paramedic Response Time on Patient Outcomes

Paramedic response time is widely regarded as one of the most influential determinants of patient outcomes following road traffic accidents (RTAs). Response time typically encompasses the interval from emergency call receipt to ambulance arrival at the scene and, in broader system analyses, extends to on-scene time and transport duration to definitive care. Numerous studies have demonstrated that shorter response times are associated with improved survival, reduced complication rates, and better functional outcomes among trauma patients.

The clinical rationale linking response time to outcomes is grounded in the time-sensitive nature of traumatic injuries. Hemorrhage, airway compromise, traumatic brain injury, and spinal trauma can rapidly progress to irreversible damage if not addressed promptly. Early paramedic arrival enables timely airway management, hemorrhage control, spinal immobilization, and rapid triage, all of which are critical during the initial minutes following injury. This aligns with the long-standing “golden hour” concept, which emphasizes the importance of rapid prehospital intervention in trauma care (Newgard et al., 2016; Harmsen et al., 2018).

Evidence from population-based and systematic studies indicates a consistent association between reduced EMS response time and improved survival outcomes in RTAs. Analyses of trauma registries have shown that even modest reductions in arrival time can lead to statistically significant decreases in mortality, particularly among patients with severe injuries or shock (Moran et al., 2021). Faster response also correlates with lower rates of secondary complications such as hypoxia, uncontrolled bleeding, and delayed neurological assessment, which are known predictors of poor long-term outcomes.

Beyond mortality, response time has a measurable impact on healthcare utilization and recovery trajectories. Patients reached more quickly by paramedics often experience shorter intensive care unit (ICU) stays, reduced need for prolonged mechanical ventilation, and improved neurological recovery following head injuries (Harmsen et al., 2018). Early stabilization and appropriate triage facilitated by timely response also reduce unnecessary secondary transfers, thereby improving system efficiency and continuity of care.

However, response time should not be interpreted as a singular or isolated metric. Research increasingly emphasizes the balance between speed and quality of care. Extremely rapid transport without adequate on-scene stabilization may be detrimental in certain injury patterns, while excessive on-scene time can delay definitive treatment. Paramedic expertise plays a critical moderating role, as experienced crews are better able to make time-critical decisions regarding rapid transport versus immediate intervention (Lerner et al., 2020). Consequently, response time must be evaluated within the broader context of paramedic decision-making and protocol adherence.

System-level factors strongly influence response time and its impact on outcomes. Urban congestion, geographic distance, ambulance availability, and dispatch efficiency all affect how quickly paramedics can reach accident scenes. Studies comparing urban and rural EMS systems reveal that prolonged response times in rural settings are associated with higher trauma mortality, underscoring the need for strategic unit placement and adaptive routing strategies (Al-Shaqs, 2020). Advances in routing technologies and predictive deployment models aim to mitigate these disparities by reducing avoidable delays.

Importantly, response time is also a key equity indicator in trauma systems. Delays disproportionately affect populations in high-traffic urban zones or remote regions, contributing to unequal access to timely emergency care. From a systems-level perspective, optimizing paramedic response time through improved routing, dispatch coordination, and workforce distribution represents a critical pathway for improving both clinical outcomes and health system fairness.

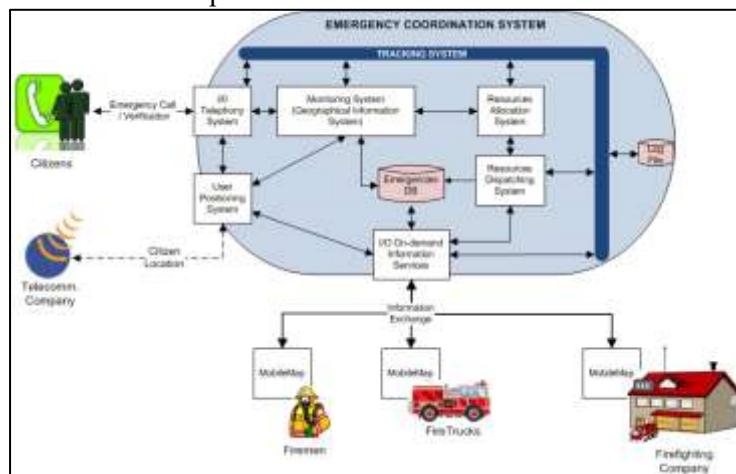
Table 2. Patient Outcomes Associated with Paramedic Response Time in Road Traffic Accidents

Outcome Domain	Effect of Shorter Response Time	Supporting Evidence
Mortality	Decreased trauma-related deaths	Newgard et al. (2016); Moran et al. (2021)
Hemorrhage control	Earlier bleeding management	Harmsen et al. (2018)
Neurological outcomes	Improved functional recovery	Lerner et al. (2020)
ICU length of stay	Reduced duration	Harmsen et al. (2018)
Secondary complications	Lower incidence	Moran et al. (2021)

In summary, the literature consistently supports the conclusion that shorter paramedic response times are associated with better survival, reduced complications, and improved recovery following RTAs. Nevertheless, response time should be understood as part of an integrated prehospital care system in which routing efficiency, paramedic expertise, and system coordination collectively shape patient outcomes.

System-Level Integration and Coordination

Effective Emergency Medical Service (EMS) response to road traffic accidents (RTAs) depends not only on rapid routing or skilled paramedics, but on system-level integration and coordination across multiple actors and technologies. EMS functions as a networked system in which dispatch centers, ambulance crews, traffic authorities, law enforcement, and receiving hospitals must operate in synchrony. When coordination is weak or fragmented, delays accumulate across the response chain, undermining the benefits of advanced routing strategies and rapid deployment.


At the front end of the system, dispatch coordination plays a pivotal role. Emergency call intake, triage, unit selection, and route assignment must be tightly aligned to incident severity and location. Integrated computer-aided dispatch (CAD) platforms enable real-time visibility of ambulance locations, unit availability, and traffic conditions, supporting informed routing and resource allocation decisions. Studies consistently show that EMS systems with centralized, interoperable dispatch platforms achieve shorter response times and more consistent performance than systems relying on siloed communication structures.

Coordination between paramedics and receiving trauma facilities is another critical integration point. Early notification of hospital teams allows trauma centers to activate appropriate resources before patient arrival, reducing door-to-intervention time. When routing systems are linked to hospital capacity data—such as emergency department crowding or trauma bay availability—paramedics can be directed to the most appropriate facility rather than the nearest one. This system-wide perspective reduces secondary transfers, optimizes hospital workload, and improves continuity of trauma care.

Inter-agency coordination further strengthens system performance in RTAs. Road traffic accidents often involve police, fire services, and traffic management authorities alongside EMS. Integrated communication channels enable rapid scene access, traffic control, and hazard mitigation, all of which directly influence paramedic arrival time and operational safety. In well-coordinated systems, traffic signal preemption, lane clearance protocols, and shared situational awareness dashboards reduce delays caused by congestion or unsafe scene conditions.

Feedback loops are essential to sustaining system-level integration. Performance data—such as response time metrics, routing deviations, patient outcomes, and near-miss events—provide actionable insights for continuous improvement. Learning-oriented EMS systems use these data to refine dispatch algorithms, adjust ambulance positioning, and update clinical and routing protocols. Without structured feedback mechanisms, routing and coordination improvements remain episodic rather than systemic. System resilience is another defining outcome of effective integration. Large-scale incidents, extreme weather, or infrastructure disruptions can overwhelm isolated EMS components. Integrated systems incorporate redundancy and adaptability, such as cross-regional mutual aid agreements, alternative routing plans, and dynamic redeployment strategies. These features enable EMS networks to maintain functionality under stress, ensuring that paramedic response remains reliable even during peak demand or system shocks.

From a governance perspective, system-level integration requires clear roles, shared standards, and aligned incentives across agencies. Fragmented oversight or incompatible technologies can negate the advantages of modern routing and dispatch systems. Conversely, coordinated governance frameworks support interoperability, workforce collaboration, and strategic investment in technologies that enhance end-to-end EMS performance.

Figure 2. System-Level Coordination in EMS Response to Road Traffic Accidents

In summary, system-level integration transforms EMS routing and paramedic response from isolated operational tasks into a **cohesive emergency care ecosystem**. Coordinated dispatch, interoperable technologies, inter-agency collaboration, and continuous feedback collectively enable faster, safer, and more equitable responses to road traffic accidents.

Emerging Technologies and Innovations

Rapid technological advancement is reshaping Emergency Medical Service (EMS) routing and paramedic response in road traffic accidents (RTAs), moving systems toward predictive, data-driven, and highly integrated models of prehospital care. Emerging technologies aim not only to reduce response times, but also to enhance decision quality, system resilience, and patient safety across the entire emergency response pathway.

One of the most influential innovations is artificial intelligence (AI)-assisted dispatch and routing. AI-based systems analyze historical incident data, real-time traffic conditions, weather patterns, and temporal trends to predict high-risk locations and optimize ambulance deployment. These tools support anticipatory positioning of EMS units and dynamic route selection, reducing response times in high-incidence zones. Early evidence suggests that AI-enhanced routing improves operational efficiency and minimizes spatial inequities in access to emergency care, particularly in large metropolitan areas (Holmberg et al., 2019; Moran et al., 2021).

Smart traffic management technologies represent another critical innovation. Traffic signal preemption systems allow ambulances to control traffic lights along their route, significantly reducing delays caused by congestion. When integrated with navigation platforms and dispatch systems, these technologies create prioritized travel corridors for emergency vehicles, enhancing both speed and safety. Studies have demonstrated measurable reductions in intersection delays and improved arrival consistency when signal preemption is deployed at scale (Alanazy et al., 2019).

Vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication technologies are also emerging as transformative tools for EMS routing. These systems enable real-time communication between ambulances, traffic infrastructure, and nearby vehicles, improving situational awareness and route safety. By alerting surrounding traffic to approaching emergency vehicles and providing paramedics with real-time hazard notifications, V2I/V2V technologies reduce collision risk and improve route reliability, particularly in dense urban environments.

Unmanned aerial vehicles, or drones, are increasingly explored as complementary assets in RTA response. Drones can be deployed ahead of ambulances to provide real-time scene assessment, identify access barriers, and guide optimal routing before paramedic arrival. In some settings, drones have been used to deliver critical supplies such as automated external defibrillators (AEDs), further extending the

reach of prehospital care (Sasser et al., 2021). While still emerging, drone integration highlights the expanding technological ecosystem supporting EMS routing.

Mobile clinical decision-support applications also enhance paramedic effectiveness during transport. Integrated with routing systems, these tools provide protocol guidance, hospital destination recommendations, and real-time communication with receiving facilities. By aligning clinical decision-making with routing intelligence, such applications strengthen continuity of care and reduce delays at hospital handover.

Despite their promise, these innovations introduce challenges related to cost, interoperability, cybersecurity, and workforce training. Successful adoption depends on system-level governance, standardized data platforms, and continuous evaluation. From a systems perspective, emerging technologies should be viewed as enablers of integration, not isolated solutions. When aligned with paramedic expertise and coordinated governance, they offer substantial potential to improve trauma outcomes and EMS performance in RTAs.

DISCUSSION

This systems-level review synthesizes evidence demonstrating that Emergency Medical Service (EMS) routing and paramedic response in road traffic accidents (RTAs) are inseparable components of an integrated prehospital trauma system. The findings extend beyond the traditional emphasis on response time as an isolated performance indicator and instead highlight how routing strategies, technological infrastructure, paramedic expertise, and inter-organizational coordination collectively shape patient outcomes.

A key insight from the reviewed literature is that routing efficiency acts as a multiplier of paramedic effectiveness. Rapid arrival alone does not guarantee improved outcomes; rather, it is the combination of timely access, appropriate on-scene decision-making, and efficient transport to definitive care that determines survival and recovery. Studies consistently show that optimized routing enables paramedics to initiate life-saving interventions earlier, particularly in time-critical conditions such as hemorrhage, airway compromise, and traumatic brain injury. This reinforces the relevance of the “golden hour” concept while also underscoring the need to contextualize time within system capability and clinical judgment.

The review also reveals a growing shift from static, experience-based routing toward dynamic, technology-enabled models. GPS navigation, traffic-aware dispatch, and predictive deployment systems have demonstrated measurable improvements in response time consistency and resource utilization. However, the evidence suggests that technology alone is insufficient. Systems that achieved the greatest performance gains were those that combined advanced routing tools with well-trained paramedics and interoperable dispatch–hospital communication. This finding supports a socio-technical view of EMS, where human expertise and digital systems must be co-designed rather than implemented in parallel.

Another important theme is the role of system-level integration in reducing fragmentation. EMS routing effectiveness declines sharply in environments characterized by siloed governance, incompatible information systems, or weak inter-agency coordination. Conversely, integrated systems—where dispatch centers, paramedics, traffic authorities, and trauma facilities share real-time information—demonstrate faster scene access, smoother hospital handover, and improved continuity of care. These findings align with broader health systems research emphasizing integration as a determinant of quality and safety in complex service delivery environments.

Geographic and contextual disparities emerged as a persistent challenge. Urban EMS systems benefit disproportionately from dynamic routing and smart traffic technologies, while rural systems continue to face structural constraints related to distance, road infrastructure, and resource density. The literature suggests that while advanced routing technologies can mitigate some disparities, strategic system design—including ambulance positioning, cross-regional coordination, and alternative response models—is essential to address inequities in trauma outcomes. This has important implications for national EMS planning, particularly in countries with mixed urban–rural geographies.

Emerging technologies such as AI-assisted dispatch, vehicle-to-infrastructure communication, and drone-supported scene assessment show considerable promise but remain unevenly evaluated. While early studies report operational benefits, robust evidence linking these innovations directly to patient outcomes is still limited. This highlights a critical research gap: many EMS innovations are assessed

using process metrics rather than clinical endpoints. Future research should prioritize outcome-oriented evaluations that examine how technological integration affects survival, neurological recovery, and long-term disability following RTAs.

The review also raises important considerations regarding governance, ethics, and sustainability. Data-driven routing systems rely on extensive data collection and algorithmic decision-making, which introduces challenges related to data quality, transparency, cybersecurity, and workforce trust. Without clear governance frameworks and continuous training, technological complexity may increase system vulnerability rather than resilience. Policymakers must therefore balance innovation with standardization, accountability, and human-centered design.

Overall, the findings support a conceptual shift from viewing EMS routing as a logistical optimization problem to understanding it as a core clinical and system function within trauma care. Effective EMS systems are those that integrate routing intelligence, paramedic decision-making, inter-agency coordination, and continuous learning into a cohesive whole. By adopting this systems-level perspective, EMS leaders and policymakers can better align investments, protocols, and training with the ultimate goal of reducing preventable deaths and disabilities from road traffic accidents.

In conclusion, EMS routing and paramedic response should be evaluated and improved as part of an interconnected emergency care ecosystem. Strengthening integration across technological, organizational, and human dimensions represents one of the most promising pathways for advancing prehospital trauma care and improving patient outcomes globally, in line with road safety and emergency care priorities advocated by the World Health Organization.

CONCLUSION

This systems-level review highlights that Emergency Medical Service (EMS) routing and paramedic response are fundamental determinants of trauma outcomes in road traffic accidents, rather than purely operational or logistical considerations. The synthesized evidence demonstrates that timely and well-coordinated paramedic access to accident scenes—enabled by efficient routing strategies, advanced dispatch systems, and integrated communication—significantly influences survival, complication rates, and recovery trajectories.

Across diverse EMS models, routing efficiency consistently emerged as a key enabler of early life-saving interventions, particularly in time-critical injuries such as hemorrhage, airway compromise, and traumatic brain injury. However, the review also underscores that response time alone is insufficient; optimal outcomes are achieved when rapid routing is combined with skilled paramedic decision-making, appropriate on-scene care, and seamless transport to definitive trauma facilities. This reinforces the importance of viewing EMS performance through an integrated systems lens rather than isolated time-based metrics.

The findings further emphasize the value of system-level integration, including interoperable dispatch platforms, real-time coordination with trauma centers, and inter-agency collaboration with traffic and public safety authorities. Emerging technologies—such as AI-assisted routing, smart traffic management, and vehicle-to-infrastructure communication—offer promising opportunities to enhance EMS performance, but their impact depends on governance, interoperability, and workforce readiness. In conclusion, strengthening EMS routing and paramedic response requires coordinated investment in technology, workforce capability, and system governance. By adopting a holistic, systems-oriented approach, EMS leaders and policymakers can improve equity, resilience, and effectiveness in prehospital trauma care, contributing to reduced preventable mortality and disability from road traffic accidents in alignment with global emergency care priorities advocated by the World Health Organization.

References

1. Alanazy, A. R., Fraser, J., Wark, S., & Davis, M. (2019). Emergency medical services response to road traffic accidents: A systematic review. *Prehospital Emergency Care*, 23(4), 512–521. <https://doi.org/10.1080/10903127.2018.1549620>
2. Al-Shaqs, S. (2020). Models of international emergency medical service (EMS) systems. *Oman Medical Journal*, 35(1), e98. <https://doi.org/10.5001/omj.2020.07>

3. Harmsen, A. M. K., Giannakopoulos, G. F., Moerbeek, P. R., Jansma, E. P., Bonjer, H. J., & Bloemers, F. W. (2018). The influence of prehospital time on trauma patients' outcome: A systematic review. *Injury*, 49(8), 1451–1462. <https://doi.org/10.1016/j.injury.2018.06.008>
4. Holmberg, M. J., Issa, M. S., Moskowitz, A., Morley, P., Welsford, M., Neumar, R. W., & Berg, K. M. (2019). Advanced life support vs basic life support in the prehospital setting: A systematic review. *Resuscitation*, 139, 1–9. <https://doi.org/10.1016/j.resuscitation.2019.03.022>
5. Lerner, E. B., Willenbring, B. D., Pirrallo, R. G., & Brasel, K. J. (2020). A consensus-based criterion standard for trauma team activation. *Journal of Trauma and Acute Care Surgery*, 88(4), 531–536. <https://doi.org/10.1097/TA.0000000000002590>
6. Moran, K., Perez, C., & Blanchard, I. (2021). Emergency medical services response times and outcomes for trauma patients: A population-based analysis. *BMC Emergency Medicine*, 21(1), 118. <https://doi.org/10.1186/s12873-021-00501-7>
7. Newgard, C. D., Meier, E. N., Bulger, E. M., Buick, J., Sheehan, K., Lin, S., & Hedges, J. R. (2016). Revisiting the “golden hour”: An evaluation of out-of-hospital time in shock and traumatic brain injury. *Annals of Emergency Medicine*, 68(1), 30–41. <https://doi.org/10.1016/j.annemergmed.2015.12.023>
8. Sasser, S. M., Hunt, R. C., Faul, M., Sugerman, D., Pearson, W. S., Dulski, T., & Lerner, E. B. (2021). Guidelines for field triage of injured patients: Recommendations of the National Expert Panel on Field Triage, 2021. *MMWR Recommendations and Reports*, 70(1), 1–33. <https://doi.org/10.15585/mmwr.rr7001a1>
9. World Health Organization. (2018). *Global status report on road safety 2018*. WHO Press.
10. World Health Organization. (2023). *Global status report on road safety 2023*. WHO Press.