The Review Of
DIABETIC
STUDIES

OPEN ACCESS

A Comprehensive Review On Medicinal Plants Targeting Breast Cancer Cells And Their Mechanisms Of Action

Sariga.k1*, S.M. Chitra2

1*PG Scholar, Department of Noi-Naadal, Govt Siddha Medical College, Chennai-106, Tamil Nadu, India.
²Assistant professor, Govt Siddha Medical College, Chennai-106, Tamil Nadu, India.
*Corresponding author Email: sarigakumar5@gmail.com

Abstract

This review focuses on medicinal plants with demonstrated anticancer activity against breast cancer cells. These plants exhibit a wide range of biological properties, including anti-inflammatory, antioxidant, antitumorigenic, antimutagenic, antineoplastic, and antiproliferative effects, all of which play a crucial role in suppressing cancer cell growth. Several plants have also been shown to enhance the efficacy of conventional chemotherapeutic agents through synergistic interactions. For example, flaxseed exhibits synergistic effects with tamoxifen and trastuzumab; curcumin enhances the activity of paclitaxel and docetaxel; garlic shows synergism with tamoxifen and doxorubicin; and ginseng improves the effectiveness of paclitaxel, doxorubicin, and cisplatin. This review systematically discusses the medicinal plants, their pharmacological activities, chemical constituents, target cell and underlying mechanisms of action in breast cancer treatment.

Keywords: Breast cancer, Medicinal plants, Anticancer activity, Target cell, Mechanism of action.

Background

According to the World Health Organization (WHO), breast cancer is defined as "a disease in which abnormal breast cells grow uncontrollably and form tumors. If left untreated, these tumors can spread throughout the body and become fatal." Breast cancer most commonly originates in the milk ducts or lobules. It is one of the most prevalent cancers among women, with risk factors including increasing age (especially over 40 years), obesity, alcohol consumption, inherited gene mutations such as BRCA1 and BRCA2, and a history of radiation exposure. Early detection through screening methods, such as mammography, is essential for improving clinical outcomes¹.

Breast cancer is the most common cancer in women and the second most common cancer overall². Approximately 99% of breast cancers occur in women and 0.5–1% of breast cancers occur in men. In 2022, there were an estimated 2.3 million new cases and 670,000 deaths from breast cancer occurred worldwide of breast cancer globally¹. Every 14 seconds, somewhere in the world, a woman is diagnosed with breast cancer³. It is the most frequently diagnosed cancer among women in 157 of 185 countries in 2022¹. Globally, breast cancer now represents one in four of all cancers in women. Since 2008, worldwide breast cancer incidence has increased by more than 20 percent. Mortality has increased by 14 percent³. For instance, in countries with a very high Human Development Index (HDI), 1 in 12 women will be diagnosed with breast cancer in their lifetime and 1 in 71 women die of it. In contrast, in countries with a low HDI; while only 1 in 27 women is diagnosed with breast cancer in their lifetime, 1 in 48 women will die from it. Approximately 99% of breast cancers occur in women and 0.5–1% of breast cancers occur in men¹. 1 in 20 women worldwide will be diagnosed with breast cancer in their lifetime, and that if current rates continue, by 2050 there will be 3.2 million new breast cancer case⁴.

With being the most common cancer in women, breast cancer accounts for 14% of Indian women⁵. 27.7% of all new cancers detected in women in India in the year 2018, were breast cancers and in the same year 1,62,468 incidences and 87,090 deaths were recorded. Every two women newly diagnosed with breast cancer one woman dies of it in India⁶. It was accounting for 28.2% of all female cancers, with an estimated 216,108 cases by 2022⁷. Overall, 1 in 28 women is likely to develop breast cancer during her lifetime. In urban areas, 1 in 22 women develops breast cancer during her lifetime as compared to rural areas where 1 in 60 women develops breast cancer in her lifetime⁸. One woman is diagnosed with breast cancer, in India, every 4 minutes. One woman dies of Breast cancer, in India, every 8 minutes⁹. In 2025, India is expected to see a continued rise in

breast cancer cases, with some projections indicating around 232,832 new diagnoses and an annual increase of approximately 50,000 cases this decade¹⁰.

Signs and symptoms of breast cancer

According to American Cancer Society (ACS), the most common symptom of breast cancer is a new lump or mass (although most breast lumps are not cancer). A painless, hard mass that has irregular edges is more likely to be cancer, but breast cancers can also be soft, round, tender, or even painful. Other possible symptoms of breast cancer include,

- > Swelling of all or part of a breast (even if no lump is felt)
- ➤ Skin dimpling (sometimes looking like an orange peel)
- > Breast or nipple pain
- ➤ Nipple retraction (turning inward)
- Nipple or breast skin that is red, dry, flaking, or thickened
- ➤ Nipple discharge (other than breast milk)
- > Swollen lymph nodes under the arm or near the collar bone (Sometimes this can be a sign of breast cancer spread even before the original tumor in the breast is large enough to be felt).

Types

Breast cancers are broadly categorized as, Invasive and Non-invasive.

Non-Invasive (In Situ)

The cancer cells are confined to the ducts (like DCIS) and have not spread to surrounding breast tissue or other parts of the body.

Invasive (Infiltrating)

The cancer cells have spread from the ducts into the surrounding breast tissue and have the potential to spread to other parts of the body.

Sub-types

The most common and widely accepted classification of breast cancer is from an immunohistochemical perspective, based on the expression of the following hormone receptors: estrogen (ER), progesterone (PR) and human epidermal growth factor (HER2). Accordingly, the following four subtypes of breast cancer are widely recognized: luminal A, luminal B, HER2-positive, and triple-negative¹¹ given in Table 1.

Table 1: Subtypes of breast cancer

SUB	Prevalence	ER	PR	HER	Ki-67	Histological	Prognosis	Survival
Type	(%)				marker expression	grade		rate (%)
Luminal - A	73	+	+	-	Low – less than 20%	Low grade	Best	94.4
Luminal- B	11	+	-		High – greater than 20%	Intermediate/ Higher grade	Worst compared to A	90.7
HER-2	i) luminal HER-2	+	+	+	15-30%	Higher	Worst compared to luminal tumors	84.8
	ii) HER-2 enriched	+	-	-	> 30%		tumors	
TNBC	12	-	-	-	≥ 30%	Higher	Worst in all	77.1

Other specific types

Beyond the molecular subtypes and the invasive/non-invasive distinction, there are other named types.

Ductal Carcinoma In Situ (DCIS)

A non-invasive type where cancer cells are in the milk ducts but haven't spread.

Invasive Ductal Carcinoma (IDC)

The most common type of invasive breast cancer, where cells start in the milk ducts and spread. It accounts for 70 -80% of all breast cancers.

Invasive Lobular Carcinoma (ILC)

Another common invasive type that starts in the milk-producing glands (lobules).

Rare types

- 1) Paget disease of the breast it accounts only 1-3% of all breast cancer
- 2) Angiosarcoma
- 3) Phyllodes tumor

Inflammatory Breast Cancer (IBC)

A rare and aggressive form where cancer cells block the lymph vessels in the breast skin, causing redness, swelling, and a dimpled texture. It is rare and accounts for 1% to 5% of all breast cancers.

Treatment protocol

In early stages: Surgery + radiation \pm systemic therapy (goal: cure).

In late stages: Combination of chemo, hormone, targeted, and supportive therapies (goal: control & prolong survival).

Drugs used for treatment

Common breast cancer drugs include hormone therapies like Tamoxifen and Aromatase Inhibitors (e.g., Anastrozole, Letrozole), chemotherapies such as Taxanes (e.g., Paclitaxel, Docetaxel), Anthracyclines (e.g., Doxorubicin), and Capecitabine. There are also targeted therapies that block specific proteins, including HER2-targeted drugs like Trastuzumab (Herceptin) and CDK 4/6 inhibitors like Palbociclib (ibrance). The choice of drug depends on the type and stage of breast cancer.

List of all drugs approved by Food and Drug Administration (FDA)¹²

Drugs Approved to Prevent Breast Cancer

- 1. Evista (Raloxifene Hydrochloride)
- 2. Raloxifene Hydrochloride
- 3. Soltamox (Tamoxifen Citrate)
- 4. Tamoxifen Citrate

Need for herbal medicine

Side Effects of Allopathic (Conventional) Cancer Drugs is important reason for patients switching to herbal medicine¹³. Cancer medicines (chemotherapy, targeted therapy, immunotherapy, hormone therapy) are effective, but they often damage normal healthy cells along with cancer cells. This causes side effects as mentioned in Table 2. Because of these side effects, many patients turn to herbal or natural therapies as supportive care. The reasons are, to reduce side effects (like nausea, fatigue, low immunity), to improve quality of life and to support immunity and overall health. Some herbs enhance the effectiveness and bio-availability of cancer drugs. For ex. Flaxseed enhances tamoxifen & trastuzumab effects (in animals) and Curcumin, Piperine, Quercetin, EGCG increases tamoxifen bioavailability via enzyme/transporter inhibition. Herbal medicines are not replacements for chemotherapy or targeted therapy. Some herbs have anticancer properties (lab/animal studies show potential. Table 3 shows the list of plants that have anti - cancerous effect against breast cancer.

Table 2: Modern therapies and its side effects

Therapy	Side effects
Chemotherapy	Hair loss, nausea, vomiting, loss of appetite, mouth ulcers, fatigue,
	weakness, low blood counts → infections, bleeding, anemia,
	Neuropathy (numbness/tingling in hands & feet), fertility issues.
Radiotherapy	Skin redness, breast swelling, fatigue, breast fibrosis, lymphedema,
	lymph/ heart effects, rare second cancers.
Targeted Therapy (e.g.,	Diarrhea, skin rashes, heart problems (some HER2 drugs), liver
Trastuzumab, CDK inhibitors)	function abnormalities.
Hormone Therapy (Tamoxifen,	Hot flashes, night sweats, bone thinning (osteoporosis), weight gain,
Aromatase inhibitors)	mood changes, risk of blood clots (Tamoxifen).
,	. ,

Immunotherapy	Inflammation in lungs, liver, thyroid, skin, flu-like symptoms, fatigue.

Methodology

To collect data from various journals, the keywords medicinal plants, chemical compounds, target cells/cell lines, mechanisms, anticancer activity, and anti-proliferative properties were searched in international databases such as ScienceDirect, PubMed, Scopus, Google Scholar, and Research gate. The searches were restricted to articles published in English, covering the period from 1990 to 2025. A total of 71 articles were included in this survey.

Table 3: Botanical description of medicinal plants

S.no	Botanic al name	Tamil name	Common name	Family	Part used	Images
1	Linum usitatissi mum	Aali vithai	Linseed/ Flax seed	Linaceae	Seed	
2	Curcum a longa	Manjal	Tumeric	Zingiberaceae	Rhizome	
3	Nigella sativa	karunjeer agam	Black cumin	Rananculaceae	Seed	
4	Allium sativum	Pondu	Garlic	Liliaceae	Bulb	ALLIUM SATIVUM
5	Tinospo ra cordifoli a	seenthil	Heart leaved moon seed	Menispermaceae	Stem	
6	Foenicul am vulgare	Perunjeer agam	Fennel	Apiaceae	Seeds	
7	Boerhav ia diffusa	Mukkiratt ai	Hogweed	Nyctanginaceae	Leaf, Root, whole plant	

	1	1		1		
8	Vitis vinifera	Thiratcha i	Grapevine	Vitaceae	Seeds of white grape	
9	Centella asiatica	Vallarai keerai	Indian pennywort	Apiaceae	Leaves (dry)	
10	Zingiber officinal e	Inji	Ginger	Zingiberaceae	Rhizome	
11	Brassica oleracea	Pachai pookose	Broccoli	Brassicaceae	Florets/ Stalks/ leaves	
12	Aegle marmel os	Vilvam	Bael, Holy fruit	Rutaceae	Fruits/Leaf/ Bark	
13	Glycine max	Oota avarai	Soya bean	Fabaceae	Seeds	
14	Mimosa pudica	Thotta sinungi	Tough-me- not	Fabaceae	Whole plant	
15	Semecar pus anacardi um	Serankott ai	Marking nut	Anacardiaceae	Leaves, nuts, fruits	
16	Hemide smus indicus	Nannari	Indian sarsaparilla	Asclepiadaceae	Root/Leaf/F lower	
17	Smilax zeylanic a	Kal thamarai	Ceylon sarsaparilla	Smilacaceae	Root	

18	Thespes ia populne a	Poovaras u	Indian tulip tree	Malvaceae	Stem	
19	Phyllant hus emblica	Nellikai	Indian goose berry/ Amla	Phyllanthaceae	Fruit	THE PART OF THE PA
20	Piper nigrum	Milagu	Black pepper	Piperaceae	Fruit	
21	Piper longum	Thippili	Long pepper	Piperaceae	Fruit	
22	Withani a somnife ra	Amukkir a kizhangu	Indian ginseng	Solanaceae	Root/leaf	
23	Aloe barbade nsis	Sotru katrazhai	Aloe vera	Liliaceae	Jelly	
24	Capsicu m annum	Kudai milagai	Bell pepper	Solanaceae	Fruit	
25	Glycyrr hiza glabra	Adhimad huram	Liquorice	Fabaceae	Root	
26	Moringa oleifera	Murungai	Drumstick tree	Moringaceae	Leaf/bark	

27	Ferula assa- foetida	Perungay am	Hing	Apiaceae	Oleo- gum resin	
28	Mangife ra indica	Mangai maram	Mango tree	Anacardiaceae	Seed kernel, peels, fruit pulp	
29	Bacopa monnier i	Neerpira mmi or Nirbrahm i	Brahmi or Indian Pennywort	Plantaginaceae	Whole plant	
30	Camelli a sinensis	Theyilai / Tey	Tea Plant, Tea Shrub, Tea Tree	Theaceae	Leaves	

Table 4: chemical constituents, target cell, mechanism and activity of medicinal plant

S. no	Botani	Chemical	Cell lines (in vitro) &	Molecular mechanism	Activity	Refere
	cal	compounds	xenografts (in vivo)			nce
	name					
1	Linum	1. Omega-3 fatty	I. In vitro	1.It acts through	Anti	14, 15
	usitatis	acid, α-linolenic	1.ER+ (Estrogen	modulation of estrogen	cancerous,	
	simum	acid, Lignan [SDG	Receptor positive)	metabolism and estrogen	cytotoxicity	
		(95%)-	human cancer cell	receptor, growth factor	to ER+ cell	
		Seciosolariciresino	(MCF-7)	receptor signaling	lines, anti-	
		1 diglucoside], and	2. It also reduced	pathway	inflammator	
		the remaining 5%	metastasis of ER-	2. Reduces the expression	y reduced	
		consist of	breast tumor	of c-erb2 level [also	cell	
		lariciresinol,	3. It increases	known as HER2—an	proliferation,	
		pinoresinol, and	effectiveness of	oncogene associated with	reduced	
		matairesinol	trastuzumab in	the development and	angiogenesis	
			reducing the growth	progression of breast	, increased	
			of HER2-	cancer]	apoptosis,	
			overexpressing	3. SDG Lignan decreases	decreased	
			human breast tumors	the level of Ki-67 – A	tumor	
			(BT-474)	biomarker that signals the	volume, anti-	
				increase of cell	oxidant, anti-	
				proliferation.	metastatic,	
				4.Downregulation of Akt	anti-tumor	
				and MAPK pathways	effect,	
					hormone	
					modulating	
					effects.	
		2.PFH-G9	II. In vitro	5. It reduces metastasis		16
		[Purified flaxseed	1. MCF-7 cell	markers [MMPs-2 &9],		
		hydrolysate]	2.T47D cell	reduce VEGF, insulin		
			In vivo	growth factor,		
				progesterone, but		

			1.Mice with Ehrlich carcinoma	enhanced expression of caspase-3. 6. Flaxseed oil was found to reduce MCF-7 tumor growth partially through IGF-1 signaling pathway		
2	Curcu ma longa	Curcumin	1. In vitro i. MCF-7 ii.MCF-10A iii.BT-474 iv.T47D v. MCF7 [LCC2, LCC9] vi. MDA-MB-231 vii. MDA-MB-468 2. In vivo i. MDA-MB-231 cells in nude BALB/c mice ii.4T1 mouse	Curcumin inhibits breast cancer cell proliferation by the following mechanisms: 1. Inducing cell cycle arrest and p53-dependent apoptosis, which occurs only in G2 phase. 2. Altering expression of signaling proteins, including Ras, phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt), mammalian target of rapamycin (mTOR) and Wnt/β-catenin, NF-κB, nuclear factor-κB 3. Downregulating transcription factors-MMP, matrix metalloproteinase; human epidermal growth factor receptor 2; VEGFR, vascular endothelial growth factor [inhibiting tumor growth and angiogenesis]. 4. Bcl-2 & Bcl-xL downregulation/inhibition and upregulation of Bax	Antioxidant, antitumor, free radical quenching process, anti-inflammator y, induction of apoptosis, inducing angiogenesis , immunomod ulatory property, anti-proliferative, antimetastatic,	17,18
3	Nigella sativa	Thymoquinone, carvacrol, Transanethole	1. In vitro i. BT-549 and ii. MDA-MB-231 iii. TNBC iv. MCF-7 cells 2. In vivo v. Breast cancer xenograft mouse model vi. Intracardiac injection of MDA-MB-231-luc cells in mice	1.Downregulation of NF- κB regulated CXCR4 expression [MDA-MB- 231& BT-549, MCF-7] 2. TQ abrogates CXCL12- induced over expression of CXCR4 and inhibits CXCR4- induced cellular invasion and migration in TNBC cells. 3. TQ also inhibited the protein expression of anti- apoptotic genes, such as XIAP, survivin, Bcl-xL and Bcl-2, in breast	Antioxidant, anti- inflammator y, anti- proliferative, Inducing apoptosis. Anticancer activity, Anti- metastatic activity.	19, 20

	1				T	
				cancer cells and breast		
4	A 11'	T. 1 22	C1 : 1	tumor xenograft.	A .:	2.1
4	Allium sativu m	It has 33 organosulfur compounds. DADS (Diallyl- disulfide), Allin, Allicin, Ajoene, Allyl-propyl - disulfide, Diallyl- trisulfide (DATS), S-allyl-cysteine, S- allo-mercapto- cysteine (SAMC),	Chemical compounds act on different cell lines: 1. DATS i. MCF-7 ii.T47D iii.MDA-MB-231 2. SAMC i. MCF-7 3. DADS i. MDA-MB-231 ii. Female rat with	1. Derivatives of garlic and their nano formulations resulted in altered expression levels of numerous re-ported genes associated with the regulation of several important signaling pathways, including the JNK, Akt/PI3K, p38, MAPK, EMT, Wnt, p53, ERK1/2, NF-kB, Nrf2,	Anti proliferative, anti-oxidant, anti-inflammator y, anti-metastatic, Mutagenesis inhibition, Anti-tumorigenic, inducing	21
		Vinyldithiins	mammary cancer growth 4. Ajoene i.MDA-MB-231	STAT3 and Chk1/cyclin B1 in human breast carcinoma.	apoptosis, Anti-cancer activity, Inhibition of cell cycle progression.	
5	Tinosp ora cordifo lia	Bis (2- ethyl hexyl) 1H-pyrrole-3,4-dicarboxylate (TCCP), carnosol, phenolics, glycosides, terpenoid steroids, polysaccharides, aliphatic compound, and alkaloids, rutin, quercetin	I. In vitro 1. MDA-MB-231 2.T47D [TC stem extract] II. In vivo Murine mammary carcinoma: Ehrlich ascites tumor [EAT]	Through apoptotic pathway activation: 1.Extrinsic or death receptor pathway 2. Intrinsic or mitochondrial pathway 3. HSP90 was downregulated by TCCP by inactivation of HSF-1 resulting in inhibition of tumor cell proliferation, VEGF-induced cell migration, and concomitant decrease in tumor burden and neo-angiogenesis in vivo. The mechanism of suppression of HSPs involves inactivation of PI3K/Akt and phosphorylation on serine 307 of HSF-1 by the activation of ERK1. 4.Restoration of p ⁵³	Cytotoxicity, induced apoptosis, antiproliferat ive, ROS enhancement , cell cycle inhibition. Antineoplastic, antimetastatic, antiangiogenic activities. Anti-cancer property.	22, 23, 24
		TcCF [chloroform fraction of TC]	II. In vitro 1. MDA-MB-231 2. MCF-7	1. It induced apoptosis through modulating the expression of pro- and anti-apoptotic proteins.		25
6	Foenic ulam vulgare	Trans-anethole, fenchone, alpha- phellandrene, and estragole	1.HER2 ER+ breast cancer type 2. Female BALB/c mice with 4T1 cells	1.Decrease the protein expression of HSP 70&90. HSP90 inhibitors suppress many oncogenic signaling pathways simultaneously, and reduce the possibility of	Anti- metastatic, anti-tumor activity, anti- cancer activity, decreased	26

				mutations which lead to	tumor	
				tumor resistance.	tumor	
				tumor resistance.	volume, antioxidant,	
					ROS	
7	Darela	Dannerin and A O	1. TNBC	1. Caffeic acid	scavenging.	27.20
/	Boerha	Boeravinone A-O, flavonoids	i. MDA-MB-	1. Caffeic acid i.It has been found to	Antioxidant, anticancer	27, 28
	via diffusa				activity, anti-	
	diffusa	glycosides,	231[methanolic	induce cell cycle arrest	3 /	
		phenolic glycosides, lignan	aerial part extract] ii. MDA-MB-453	and apoptosis in MDA-MB-231 breast cancer	enzymatic	
		glycosides, fighan	2. Hormone	cells and also reduce cell	activity, cytotoxic	
		punarnavine, rutin,	dependent	survival and activate	activity	
		caffeic acid,	MCF-7 cells	apoptosis in MCF-7	[methanolic	
		kaempferol, gallic	(Root decoction,	breast cancer cells.	aerial part	
			methanolic whole	2. Ferulic acid	_	
		acid, ferulic acid,			extract],	
		isoquercitrin, chlorogenic acid,	plant extract) 3. Murine 4T1	The cytotoxic activity of ferulic acid has been	antiproliferat ive	
		traumatic acid,	3. Mullie 411	shown on three different	[methanolic	
		phenolic acid		breast cancer cell lines.	whole plant	
		phonone acid		i. In MDA-MB-231 cells,	extract],	
				ferulic acid has decreased	antiapoptotic	
				cell viability by inducing	antiapoptotic, anti-	
				apoptosis and suppressed	inflammator	
				metastasis by reversing		
				epithelial-mesenchymal	y, immunomod	
				transition.	ulatory	
				ii. In the MCF-7 cells,	properties,	
				ferulic acid has reduced	inducing	
				viable cell numbers and	apoptosis,	
				new DNA synthesis by	suppress	
				inhibiting the EGFR	migration.	
				receptor.	illigiation.	
				iii. It has also inhibited		
				the growth of 4T1 mouse		
				breast cancer cells.		
				3. Isoquercitrin		
				i. Inducing the		
				mitochondrial-mediated		
				apoptosis pathway via the		
				inhibition of LSD 1 in		
				MDA-MB-231 cells.		
				4. Rutin		
				i. It enhances		
				chemosensitivity to		
				cyclophosphamide and		
				methotrexate in MDA-		
				MB-231and MCF-7		
				breast cancer cell lines by		
				reversing multidrug		
				resistance via inhibition		
				of P-gp and BCRP		
				pumps.		
				5. Chlorogenic acid		
				i. It has been shown to		
				inhibit proliferation,		
				induce apoptosis, and		
L				muuce apoptosis, and		

				suppress migration of human MDA-MB-231 and MDA-MB-453 cells,		
				and murine 4T1 breast cancer cells by impairing the NF-κB/EMT signaling pathway.		
				ii. In 4T1 breast cancer cells, it has been revealed that chlorogenic acid induces apoptosis via p53,		
				Bax, Bcl-2, and caspase-3 signaling pathways. iii. Impairing NF-		
				κB/EMT signaling pathway. 6. Traumatic acid i. It has shown to decrease		
				cell proliferation and viability and induce apoptosis by influencing lipid peroxidation in MCF-7 breast cancer		
8	Vitis vinifer a	1.Alkaloids, flavonoids, terpenoid, steroids and quinine, Polyphenol, Resveratrol, Proanthocyanidins , Anthocyanin, flavanols, flavonols, stilbenes, phenolic acids, catechins, epicatechin, gallic acid, p-coumaric. 2. Methanolic extract of seed: Dotriacontane, Linoleic acid and Decanoic acid ethyl ester, 1,2,3, propanetriol, monoacetate, and Dichloro methyl propane sulfone	1.MCF-7 (ER+) cells (Dry seed extract) 2.MDA-MB-231 (Methanolic extract of grape seed)	cells. 1. Inhibition of proteins Bcl-2, Bcl-xL, and survivin, and induction of apoptosis, and downregulation of p ⁵³ . 2. Downregulation of interlukin-1 alpha (IL-1α) 3. The LDH Lactate Dehydrogenase leakage in MDA MB 231 cell line may be due to the cytotoxic nature of the Vitis vinifera seed which confirms the anti-tumor activity.	Antioxidant, anticancer, antitumor activity, antiproliferat ive, chemopreventive, suppressing metastasis.	29, 30
9	Centell a asiatica	Asiaticoside (AC), MECA [Methanolic extract of centella asiatica]:	In vitro 1.MCF-7 cells (methanolic extract) 2. MDA-MB-231	1.Induces apoptosis in MCF-7 cells by induction of nuclear condensation, flip-flop movement of the membrane, loss of	Induce apoptosis, anti- tumor activity, antiproliferat	31, 32
		Asiatic acid, high concentration of	In vivo	mitochondrial membrane	ive, antioxidant,	

		phenolic and flavonoid constituents.	2.Subcutaneous injection of MDA-MB-231 into female BALB/c nude mice	potential and by inducing DNA strand breaks. 2. AC downregulates YAP1 & VEGFA signaling pathways in both cells 3. Increased levels of cleaved caspase 3 and Bax after AC treatment, while the levels of antiapoptotic protein Bcl-2 were decreased. 4. AC inhibits tumorigenesis and angiogenesis in nude mice by dampening the YAP1/VEGFA signaling axis.	cytotoxic activity, inhibiting angiogenesis and tumorigenesis in nude mice. Suppress cell growth, migration, invasion in breast cancer cells.	
10	Zingib er officin ale	1.Monoterpenes Cineole, citral, limonene, linalool, β-pinene 2.Sesquiterpenes Elemene, farnesene, zerumbone. 3. Phenolics [6]-gingerol High phenolic compound. 8- gingerol, 10- gingerol, zingerone, shogaols [6,8,10], paradol.	In vitro 1. MCF-7 2.MDA-MB-231	1.It reduced clonogenicity and cell migration in breast cancer cell lines (MDA-MB-231 and AT1) by decreasing matrix metalloproteinase (MMP-9). Terpenoid compounds in the Zingiberaceae group can inhibit tumor development by stopping the cell cycle in apoptosis. 10-gingerol can inhibit cell proliferation through protein downregulation by regulating the cell cycle in MCF-7 and MDA-MB-231 cell lines.	Anticancer, antimetastatic, antimetastatic, antiproliferative, cell cycle arrest, antioxidant, antiangiogen ic, antimiflammator y, induce apoptosis and autophagy, antimetic in chemotherap y, chemoprevention, immunomod ulatory activity.	33
		[6]-gingerol nano- encapsulated with κ-carrageenan (Zo-NPS)	In vivo 1.Female Mus musculus Balb/c mice induced with benzo[a]pyrene	2.Reduces/blocking TNF- α level 3. Boost antioxidant defenses (SOD, GSH, CAT) in blood serum.		34
11	Brassic a olerace a	1.Aliphatic glucosinolates include progoitrin, glucoerucin, glucoraphanin, glucoiberin,	In vitro 1. Hormone dependent i) MCF-7 ii) T-47D 2.Triple negative	1.It inhibits the histone deacetylases (HDAC3) activity which is responsible for tumor expression.	Antioxidant, anticancer, anti- inflammator y, anti- metastatic,	35, 36

		sinigrin, and gluconapin. Sulforaphane, Indole-3-carbinol, diindolylmethane, Flavonoids: quercetin, kaempferol, rich in selenium, Isothiocyanate	i)MDA-MB-231 ii)MDA-MB-468 iii) SUM159 In vivo 3. Nonobese diabetic/severe combined immunodeficient mouse model exhibited that sulforaphane eliminated breast cancer stem cells in vivo.	2. kaempferol induces phagocytic activity & increases the production of NK cells. 3. SFN acts in further ways i) It acts as a Nrf2 inducer, has the ability to prevent the metastasis of implanted breast cancer cells in mice and the growth of breast cancer cells in humans. ii. Modulate epigenetics (modulates various p ⁴⁵⁰ cytochromes CYPs 19, 1A1, 1A2 &1B1 in MCF-7 ER+, MDA-MB-231 ER It reduces cytochrome p450. ii) Sulforaphane downregulated the Wnt/β-catenin self-renewal pathway. sulforaphane decreased the protein levels of β-catenin and cyclin D1 in both SUM159 and MCF7 cell lines iii) Sulforaphane was also shown to suppress angiogenesis and metastasis by downregulating vascular endothelial growth factor, HIF-1α, matrix metalloproteinase-2 and matrix metalloproteinase-	anti- angiogenesis , anti- carcinogenic, immunomod ulatory. Chemo preventive action, induce apoptosis, cell cycle arrest, antiproliferat ive.	
12	Aegle marme los	1.Fruit bulb Aegeline, aegelenine,	1.DMBA induced breast cancer in rats [bark extract]	9. 1.Tumor volume reduced 2. Serum TNF-α level reduced	Antiprolifera tive, anticancer,	38, 39
		marmelin, o- methyl halfordinol, alloimperatorin, furocoumarins, psoralen, o- isopentenyl halfordinol, marmelosin, umbelliferone and scopoletin are the coumarins. 2.Alcoholic extract of fruit	2.MCF-7 & MDA-MB-231 cells [leaf extract] 3.Cytotoxic activity against SKBR3 human breast adenocarcinoma cell line [ethanolic fruit extract] 4. DMBA induced mammary cancer in Charles Foster rats [ethanolic fruit pulp extract]	3. suppression of NF-κB activation and subsequent reduction in the p-AKT levels and thus decreases cell survival, proliferation, and invasiveness. 4. The expression of vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8) that regulates capillary growth in the tumor have	immunomod ulatory, cytoprotectiv e, antineoplasti c effect, antitumor activity, cytotoxic activity, antioxidant, anti- inflammator y,	

		bulb: carotenoids, phenolics, flavonoids, alkaloids, tannins, terpenoids, coumarins, steroids, saponins, lignins, phlobatannins, inulin and cardiac glycosides.		also been found to be reduced by marmelin. 5. Modulating wnt/beta catenin pathway (decreased m-RNA expression of MCF-7.	anti- angiogenic, antiapoptotic , free radicals scavenging.	
13	Glycin e max	Genistein [phytoestrogen]	1.Triple negative MDA-468, MDA- MB-231, BT20 2. Hormone dependent i) MCF-7, MCF-7-D- 40 & T47D, MCF-7 HER2 cells. ii) BT-474 - synergistic effects with tamoxifen.	1. EGF → Akt → NF-κB pathway Genistein blocks EGF signaling → suppresses Akt → downregulates NF-κB → induces apoptosis. 2. MEK5 → ERK5 → NF-κB pathway Genistein inhibits MEK5/ERK5 → reduces NF-κB activity → suppresses cell growth & triggers apoptosis. 3. Akt → HIF1α → VEGF pathway (angiogenesis-related) In silico studies: genistein inhibits this cascade → ↓ VEGF expression → suppresses angiogenesis. 4. Genistein addition in T47D cells results in a decrease in the expression of MMPs 2, 3, 3, and 15, preventing angiogenesis and metastasis. 5. Genistein controls MAPK (ERK1/2) and PI3K/AKT signaling pathways, epigenetic regulation, inhibits angiogenesis, invasion, and cell migration, and modifies the expression of numerous miRNAs. 6. Genistein raises the Bax/Bcl-2 ratio, causing apoptosis through autophagy-dependent pathways.	Inhibiting angiogenesis, anti-tumor activity, inducing apoptosis, anti-oxidant, immunity modulation, anticancer effect, antiproliferat ive, chemopreventive activity. It also inhibits invasion, and cell migration.	40, 41
14	Mimos a pudica	L- mimosine, Methanol extract of whole plant [MMP]	1.Triple negative i)MDA-MB-453 ii)MDA-MB- 231	1.It significantly reduces the level of anti-apoptotic protein Bcl-2.	Free radicals scavenging activity, antioxidant,	42, 43

			2. Hormone dependent i) MCF-7 cell	2.Induce mitochondrial dependent intrinsic pathway apoptosis by increasing intracellular ROS. 3. 1. NF-κB, COX & p-AKT pathway inhibiton. 4. It inhibits the cell cycle traverse in the late Glphase prior to the onset of DNA synthesis that leads to cell cycle arrest.	anticancer activity, cytotoxic effect, anti- tumor activity, inducing apoptosis, anti- mutagenic effect.	
15	Semec arpus anacar dium	1.BLEA [Ethyl acetate extract of S.anacardium leaves]-17 phytochemical compounds- (E)-octadec-9-enoic acid, palmitic acid, (E)-3,7,11,15-tetramethylhexade c-2-en-1-ol, methyl3-(3,5-ditert-butyl-4-hydroxyphenyl) propanoate 2.The nut contains bhilawanols, cardol, anacardic acid, semecarpol and anacardol	In vitro 1. Hormone dependent i. MCF-7 cells [leaf] ii. T47D [nut] 2.Triple negative i. MDA-MB- 231[leaf] In vivo 1.EAC cell-induced tumor-bearing mice	1. The nut extract is cytotoxic and induces cell death through apoptosis in breast cancer (T47D) cells by arresting the transition of the G2/M phase 2. BLEA exhibited cell cycle arrest in the G1 phase and apoptotic cell death in MCF-7 cells.	Cytotoxicity, anti-tumor, inducing apoptosis, inhibits cell migration, anticancer activity, antioxidant, anti- inflammator y, suppressed cancer cell migration, dna synthesis inhibition, inhibition in tumor growth.	45
16	Hemid esmus indicus	1.Root: Tannins, sterols, saponin, terpenoid, lupeol, amyrins, resin acid, desinine, sitosterol, and fatty acids, hemidesmol, 2-hydroxy-4-methoxy benzaldehyde (MBALD) 2.Flower: Isoquercetin, rutin, hyperoside 3.Leaf: tannins, hemidesmin 1&2.	1.MCF-7 cell	1. Modified several intracellular signaling pathways [STAT-3, HIF-1, NF-κB, IL-1, Cox-2, TNF-α, and oncogenic Kinase (P13k, IKK, IRAK1/4, JAK, MARK/ERK, and Syk/Src] involved in cell survival and proliferation, and ultimately caused tumor cell death via reduction in mitochondrial transmembrane potential and enhanced the Bax/Bcl-2 ratio. The mitochondrial depolarization is caused by H. indicus roots. By releasing intracellular Ca2 + reserves, H. indicus caused a large Ca2+ increase.	Anti- inflammator y, anticancer, antioxidant activity, chemo- preventive agent, cytotoxicity, anti- angiogenic effect, anti- carcinogenic, antiproliferat ive.	46-50

			2. The angiogenesis inhibition induced in		
Smilax zeylani ca	Diosgenin, smilagenin, β- sitosterol, hydroxytyrosol, squalene and sarsapogenin.	1.MCF-7 & MDA- MB-231cells	hypoxia was regulated by a more complex mechanism involving firstly HIF-1α inhibition, and then VEGF and VEGFR-2 downregulation. Diosgenin is able to inhibit proliferation of MCF-7 & MDA-MB-231 breast cancer by upregulation of p53 tumor suppressor gene and downregulation of Bcl-2 which promotes cell	Anti- inflammator y, antioxidant, cytotoxic activity.	50
Thespe sia populn ea	Populene- A-H, mansonone-E, mansonone -D, gossypol, thespone, thespesone.	1.Bark methanol extract: MCF-7 & MDA-MB-231cells 2.Wood & dark heartwood dichloromethane extract: MCF-7 cell	1. It may act via estrogen receptor pathways or through alternative signaling pathways such as MMP, Akt, NF-κB, and MAPK.	Anti-tumor, antioxidant activity, cytotoxic activity, wound healing properties.	50, 51
Phylla nthus emblic a	PEFeNPs, polyphenols, Tannins: Ellagic acid, corilagin, pyrogallol, chebulic acid, gallic acid Flavonoid: Quercetin Others: geraniin, norsesquiterpenoid s, elaeocarpusin, and prodelphinidins B1 and B2.	In vitro 1.MDA-MB-435 2.MDA-MB-468 3.MDA-MB-231 It doesn't act against MCF10A (normal breast cancer cell) 4.MCF-7 In vivo 1.DMBA induced breast cancer in rats	1.Alteration of mTOR/Maf-1/PTEN signaling pathway 2. Inhibition of NF-кВ 3. inhibition of growth factor signaling pathway i. EFGR pathway ii.PI3K pathway	Anticancer & antioxidant activity, anti-inflammator y, antitumor, free radicals scavenging activities, tumor repressive property, induce apoptosis, cancer preventive, cytotoxic activity, anti-proliferative, autophagy, anti-neoplastic	52-54
Piper nigrum	Piperine	In vitro 1.Hormone dependent. i. HER-2 overexpressing breast cancer cell ii. MCE 7	1.Piperine strongly suppressed EGF-induced MMP-9 expression through inhibition of AP-1 and NF-κB activation by interfering with	Immunomod ulatory, antioxidant, anti-inflammator y, induce	55-57
	zeylani ca Thespe sia populn ea Phylla nthus emblic a	zeylani ca smilagenin, β- sitosterol, hydroxytyrosol, squalene and sarsapogenin. Thespe sia populn ea Populene- A-H, mansonone-E, mansonone -D, gossypol, thespone, thespesone. Phylla pEFeNPs, polyphenols, Tannins: Ellagic acid, corilagin, pyrogallol, chebulic acid, gallic acid Flavonoid: Quercetin Others: geraniin, norsesquiterpenoid s, elaeocarpusin, and prodelphinidins B1 and B2.	zeylani ca smilagenin, β- sitosterol, hydroxytyrosol, squalene and sarsapogenin. Thespe sia mansonone-E, mansonone-D, gossypol, thespone, thespesone. Phylla nthus emblic a flavonoid: a line flavonoid: A gallic acid flavonoid: Quercetin Others: geraniin, norsesquiterpenoid s, elaeocarpusin, and prodelphinidins B1 and B2. Piper nigrum Thespe sitosterol, hydroxytyrosol, squalene and sarsapogenin. In witro line witro line witro line witract: MCF-7 & MDA-MB-231 cells 2. Wood & dark heartwood dichloromethane extract: MCF-7 cell line witro line	Smilax zeylani ca itsoterol, hydroxytyrosol, squalene and sarsapogenin.	Smilax zeylani ca hydroxytyrosol, squalene and sarsapogenin. Smilay downregulation. Diosgenin is able to sitosterol, hydroxytyrosol, squalene and sarsapogenin. Smilay downregulation of β-12 which promotes cell survival. I. It may act via estrogen extract: MCF-7 & MDA-MB-231 cells Smilay downregulation of β-12 which promotes cell survival. I. It may act via estrogen extract: MCF-7 & MDA-MB-231 cells Smilay downregulation of β-12 which promotes cell survival. I. It may act via estrogen extract: MCF-7 cell Smilay polyphenols, thespone, thespesone. Im vitro I. MDA-MB-231 cells I. Alteration of mTOR/Maf-1/PTEN signaling pathway such activity, wound healing properties. I. Alteration of mTOR/Maf-1/PTEN signaling pathway in the signaling pa

	1		0.70 · 1. N	A1	· · · · · ·	
			2.Triple Negative	Akt signaling pathways	antimetastati	
			Treated by piperine	resulting in a reduction in	c, anticancer,	
			potentiated TRAIL	migration. It blocks	chemo-	
			[tumor necrosis	ERK1/2 signaling	preventive	
			factor related	pathway which leads to	effect, anti-	
			apoptosis-inducing	significant reduction in	proliferative,	
			lignand]	SREBP-1 level and FAS	inducing	
			i. MDA-MB-468	[fatty acid synthase]	apoptosis,	
			ii. MDA-MB-231	expression.	anti-	
			In vivo	2.Induce apoptosis	angiogenic	
			i.EMT6/P derived	through activation of	property.	
			from BALB/c	caspase-3 and PARP [
			mouse.	poly ADP-ribose		
			ii. Murine 4T1	polymerase (PARP)		
				cleavage.		
				2. Piperine enhances		
				TRAIL responsiveness		
				along with suppression of		
				survivin synthesis and		
				p65 phosphorylation.		
				3. It inhibits tumor		
				necrosis factor-α (TNF-		
				α)-induced activation of		
				NF-κB		
				4.It inhibited human X-		
				linked IAP(XIAP), a		
				protein that prevents		
				apoptosis.		
				5. Cytotoxic effect		
				through cell cycle arrest		
				in G2/M phase.		
				6. It controls a lot of		
				proteins in the Bcl-2		
				family, which includes		
				Bax and Bcl-2.		
				7. It suppresses the tumor		
				growth through		
				downregulation of Ki-67		
				expression.		
21	Piper	Piperlongumine	1.MCF-7	1. Induced cell cycle	Anticancer,	58
	longu		2. TNBC	arrest in G2/M phase	antioxidant,	
	m		3.MDA-MB-231	2.Modulates Cell Cycle-	antiproliferat	
				Regulatory Proteins such	ive, suppress	
				as cyclins and CDKs.	migration	
				3. Induce intracellular		
				ROS accumulation &		
				GSH depletion.		
				4. Decreases nuclear		
				translocation of NF-κB		
				p ⁶⁵		
				5. IKKβ suppression		
				6. PL Increases the		
				Expression of p21 mRNA		
				7. PL directly interacts		
				<u> </u>		
				with Keap1, which leads		
I				to Nrf2 activation and		

				upregulates HO-1 expression, thereby resulting in the selective		
				killing of cancer cells in the breast [9]. In addition, PL induced apoptosis of breast cancer cells via		
				activation of transcription 3 (STAT3) and phosphatidylinositol 3- kinase (PI3K)/Akt/mammalian		
				target of the rapamycin (mTOR) signaling pathway.		
22	Withan ia somnif era	Withaferin-A, anaferine, isopelletierine, sitoindoside IX, somniferine, withanone	In vitro 1.ZR751 2.MCF-7 3.MDA-MB-231 4. SUM159 5.SK-BR3 6.T47D 7.MDA-MB-468 In vivo 1. MDA-MB-231 xenograft 2.SUM159 and MCF-7 xenograft	1. Withaferin A diacetate, a derivative of withaferin, significantly decreased the viability of breast cancer stem cells. Tubocapsenolide A (TA), a new withanolide derivative, can decrease the activity of the Hsp90-Hsp70 chaperone complex via diol oxidation, causing the instability of Hsp90 client proteins, and cell cycle arrest and apoptosis in human breast cancer MDA-MB-231 cells 2.inhibits STAT3 & STAT5 signaling and TNF. 3. Modulates MAPK pathway 4.tumor suppressor activation – upregulates p53 & upregulates p53 & upregulates p51 5.reduces estrogen receptor-α 6.decreases Bcl-2 &Bcl-XL / increases Bax 7.disruption of PI3/Akt signaling 8.NF-κB inhibition 9. inhibits MMP2-9 and VEGF expression. 10. It increased the expression of the breast cancer metastasis suppressor gene (BRMS1) in MDA-MB-231 breast cancer cells.	Anticancer, inducing apoptosis, inducing ROS level, antimetastatic, antiangiogenic, antiinflammator y, antioxidant, chemopreventive, immunomod ulatory	59

23	Aloe barbad ensis	Aloin, aloe- emodin, aloesin, emodin.	In vitro 1.MCF-7(ER +)	1. Aloe Emodin can be an effective inhibitor to the hormonal dependence MCF-7 breast cancer cells at low concentration without being cytotoxic to normal breast cells Targeting estrogen receptor protein stability through distinct mechanisms.	Anti- proliferative	60
			2. Her2/neu	1.Emodin Azide Methyl Anthraquinone Derivative (AMAD) was found to effectively block phosphorylation of Her2/neu, suppress growth, transformation and metastasis as a tyrosine kinase inhibitor, and increase the susceptibility of Her2/neu-over expressing cancer cells to standard cytotoxic therapeutic agents 2. Reduction of the level of Bcl-2 and increased levels of cleaved caspase-3, PARP, p53 and Bax 3. Disruption of the PI3K/Akt-dependent pathway	Apoptotic activity, anticancer, antioxidant, anti-inflammator y, wound healing, anti-tumor activity, anti-angiogenesis, suppress metastasis, anti-proliferative activity.	61
24	Capsic um annum	1.Pectic polysaccharides 2.Capsaicinoids: capsaicin, dihydrocapsaicin, nordihydrocapsaicin, homodihydrocapsaicin, homocapsaicin, norcapsaicin.	In vitro i.MCF-7 ii.BT-20	1. Capsaicin significantly decreased mitochondria membrane potential, induced the cleavage of PARP-1, and decreased procaspase-7 expression in both cells. Apoptosisinducing factor (AIF) was distinctly released from mitochondria and translocated into the cytoplasm and nucleus in MCF-7 cells (52.9%), but not in BT-20 cells (2%) after treatment with 200µM of capsaicin for 24 hours and arrested cell cycle in S phase.	Inducing apoptosis and cell cycle arrest	62

		Capsaicin	In vitro ii.T47D iii.BT-474 2. Triple negative i.MDA-MB-231 ii.MDA-MB-436 iii.BT-20 iv.SKBR-3 In vivo i. Mouse xenograft model.	1. G0/G1 cell cycle arrest. 2. capsaicin is a novel modulator of the EGFR/HER-2 pathway in both ER-positive and - negative breast cancer cells with a potential role in the treatment and prevention of human breast cancer. 3. In vivo activation of ERK was clearly decreased, as well as expression of HER-2 and cyclin D1, whereas caspase activity and PARP cleavage products were increased in tumors of drug-treated mice.	Inducing apoptosis & cell cycle arrest, antiproliferative	63
25	Glycyr rhiza glabra	Licochalcone A, glabridin, isoliquirtigenin, glycyrrhizin, glycyrrhetinic acid.	1.Hormonal dependent i.MCF-7 ii. T47D 2.Triple negative i.MDA-MB-231 ii.MDA-MB-361 In vivo i. 4T1 cell in BALD/c mice	1. Decrease Bcl-2, mTOR, p-mTOR, COX-2, N-cadherin & increases Bax, caspase 3 & 8, PARP, p62, CDK2, E- cadherin. 2. Decreases VEGF-A & HIF-1α.	Anti- inflammator y, antioxidant, anticancer, anti- proliferative, cell cycle arrest, activities, immune- stimulating activity, inducing autophagy, induce apoptosis, inhibiting angiogenesis	64
26	Moring a oleifer a	1.Chlorogenic acid, quercetin, ellagic acid, niazirin, kaempferol, eugenol.	1. Hormonal dependent In vitro i.MCF-7[leaf extract]	1. Its significant antiproliferative effect was observed at 200 µg/mL dose of fraction B (ethyl acetate) and cell viability was reduced to 40%. In conclusion, it causes cyclin dependent kinase-2 (CDK-2) inhibition while ellagic acid, chlorogenic acid and quercetin being the most stable and potent inhibitors to treat estrogen receptor positive breast cancer targeting CDK-2.	Antiprolifera tive, anti- cancer, anti- inflammator y activity, increase apoptosis, antioxidant, chemo- preventive.	65

		2. Niazimicin, thiocarbamate, benzyl isothiocyanate, glucosinolates, isothiocyanates, glycosides, zeatin (anti-aging compound), saponins, tannins.	In vitro [crude methanolic leaf extract & dichloromethane] i.MCF-7 ii.MDA-MB-231	2. It reduced NF-κB expression, decreased cell growth in both cells by inducing apoptosis. 3. MO contains zeatin, which is an anti-aging compound. It also has anti-cancer properties and is a good anti-oxidant.	Antioxidant, anti-cancer, anti- inflammator y activity.	66
27	Ferula assa- foetida	1.Nano emulsion containing ferula assa-foetida seed essential oil 2.Silver nanoparticles (AgNPs) with aqueous extract of ferula assa-foetida extract 3. Zinc nanoparticles	1. MCF-7 cell 2. MCF-7 cell 3. MCF-7, MDA-MB-231	Increased BAX and decreased BCL2 expression, decreased VEGF and VEGFR.	Antiprolifera tive, anti- tumor, anti- inflammator y activity, anticancer, antimutageni c, antineoplasti c, antioxidant, cytotoxic	67
		containing ferula assa-foetida extract 4.Essential oil of assa-foetida 5.Ferulic acid	4.MCF-7 5. MDA-MB-231	Decreased the viability of MCF-7 cells. Increased caspase 3 and	activity	
			6. Mouse xenograft model 7.4T1 cell	reduced the proliferation of cancer cells about 40% at 100 µM. 100mg/kg significantly reduced tumor volume, weight and growth in mice. Reduced the growth of cancer cell at 500µg/ml.		
		6. Galbanic acid 7.Sequiterpene	8. MCF-7, MDA- MB-231	Up-regulation of Bax and caspase-3 and down-regulation of bcl-2. Cytotoxic activity against		
		coumarins 8.Farnesiferol C	MCF-7	MCF-7 cell Decrease cell viability and stopped the cell cycle in G0/G1 phase and induced apoptosis		
28	Mangif era indica	Mangiferin, norathyriol, gallotannin, pyrogallol, gallic acid, quercetin, methyl gallate.	In vitro [cell lines] 1.Bark: MDA-MB- 231, Kernel: MCF- 7, MDA-MB-231, Leaf: BT-474, MCF- 7, MDA-MB-231, Peel: MCF-7,	1. Inhibition of NF-KB &nRac1/WAVE2 pathways, suppression of PI3K/AKT pathway, activation of AMPK pathway, inactivation of β-catenin pathway.	Anti-cancer, cytotoxic, anti-inflammator y, antioxidant, immunomod ulatory, anti-	68

			Pulp: BT-474, MCF-7, Peel and plup: MCF-7, MDA-MB-231 2.Polyphenols: MDA-MB-231, MCF10DCIS, Mangiferin: MCF-7, MDA-MB-231, T47D, BT-549, Norathyriol: MCF-7, Gallotannin: MCF-7, Gallotannin: MCF-7, Gallotannin: MCF-7, MDA-MB-231, MCF10DCIS. Pyrogallol: MCF10DCIS, Methyl gallate: MCF10DCIS, Quercetin: MCF-7, mice bearing In vivo [xenograft] 1.Pulp: mice bearing BT-474 xenografts 2. Polyphenols & quercetin: mice bearing MCF10DCIS 3.Mangiferin & quercetin: mice bearing MDA-MB-231.	2. Modulation of PPARS, intercellular Ca ²⁺ signaling, cell cycle regulators, ER activity.	proliferate and reduce tumor volume in ductal carcinoma in situ breast cancer.	
29	Bacopa monnie ri	1.The ethanolic extract of DCM [Dicholromethane] of Bacopa monnieri contains: Bacoside A and B, brahmin, cucurbitacins, and betulinic acid.	1) In vitro i. MCF-7 ii. MDA-MB-231	Inducing cell cycle arrest at G2/M phase	Anti proliferate, antitumorige nic activity, cytotoxic activity, inducing cell cycle arrest.	69
		2. Bacopaside I & II [synergistic action]	In vitro i. MDA-MB-231 & BT-474 (most sensitive) ii. MCF-7, T47D, BT-474 cell lines	1.Inducing cell cycle arrest at G2/M phase. 2. Altered morphology of breast cancer cell lines, 3.Reduced transcript expression of AQP1 in MDA-MB-231 cells.	Antiproliferative, induce cell cycle arrest, induce apoptosis and reduce migration, reduced invasion in mda-mb-231.	70
30	Camell ia sinensi s	Epigallocatechin- 3-gallate	1. ER +: MCF-7, T47D, ZR-75-1 cells 2. HER2 +: BT-474, SK-BR-3	1.blocks cell cycle arrest at G0/G1 or G2/M phase.	Anti- proliferative, proapoptotic activity, anti-	71

	3. TNBC: MDA-MB-231, MDA-MB-468, Hs578T 4. Animal models: (Xenograft models) MCF-7 xenografts (ER+), MDA-MB-231 xenografts (TNBC), BT-474 xenografts (HER2+) Syngeneic models: 4T1 cells in BALB/c mice to test.	2.Increases pro-apoptotic proteins- p53, Bax, caspase. 3.decreases anti-apoptotic proteins- Bcl-2, survivin. 4.Inhibits telomerase (hTERT). 5.Reduces MMP-2 &9, inhibits β-catenin/Wnt and FAK pathways. 6.Prevents EMT [epithelial to mesenchymal transition] 7. Decreases VEGF 8. Inhibits NF-κB & STAT3 signaling, lowers inflammatory cytokines (IL-6, TNF-α).	metastatic & anti- migratory effects, anti- angiogenic activity, anti- inflammator y, immune modulation.
--	---	--	--

Discussion

All the 30 selected medicinal plants demonstrated in-vitro activity against breast cancer cell lines, although the depth of evidence varies considerably. Certain plants, such as Curcuma longa, Nigella sativa, Piper nigrum, Glycine max, and Withania somnifera, have been extensively studied, whereas others show preliminary but promising results.

Several phytochemicals from medicinal plants have demonstrated significant anti-breast cancer activity in in vivo models. Among them, curcumin (Curcuma longa), thymoquinone (Nigella sativa), piperine (Piper nigrum), and soy isoflavones such as genistein and daidzein (Glycine max) provide the strongest and most consistent evidence, showing inhibition of tumor growth, induction of apoptosis, and suppression of metastasis in various breast cancer models. In addition, Foeniculum vulgare and Zingiber officinale have exhibited activity against 4T1 and BaP-induced breast tumors, while Phyllanthus emblica and Aegle marmelos significantly reduced tumor incidence in DMBA-induced rat mammary carcinogenesis. Glycyrrhiza glabra and Ferula assa-foetida have also shown promising effects in 4T1 and xenograft models. Together, these findings suggest that phytochemicals exert their anti-cancer effects through multiple mechanisms including apoptosis induction, anti-mutagenic activity, inhibition of angiogenesis, and chemo-preventive potential, highlighting their value as complementary agents in breast cancer management

The following medicinal plants have demonstrated strong evidence from both in vitro and in vivo studies against breast cancer: Curcuma longa (curcumin), Nigella sativa (thymoquinone), Piper nigrum (piperine), Glycine max (soy isoflavones), Phyllanthus emblica (amla), Zingiber officinale (gingerol), Foeniculum vulgare (fennel), Aegle marmelos, Glycyrrhiza glabra (licorice), and Ferula assa-foetida, Mangifera indica. Only a few medicinal plants have reached clinical evaluation for anticancer properties: Curcuma longa (curcumin) shows safety and modest efficacy; Glycine max (soy isoflavones) has been studied for breast cancer prevention and recurrence with mixed results; Withania somnifera (ashwagandha) provides supportive therapy by reducing fatigue and boosting immunity; Vitis vinifera (resveratrol and grape extracts) is under limited clinical trials for chemoprevention; Brassica oleracea (sulforaphane from broccoli sprouts) has been explored for anticancer potential; and Phyllanthus emblica (amla) shows early evidence for antioxidant and supportive anticancer roles, though efficacy is not yet fully established and camellia sinensis has been clinically tested for its chemo-preventive effects in cancers like breast, prostate, skin.

Plants like flaxseed and soy isoflavones are primarily active in hormone-dependent (ER+) cells, making them relevant for estrogen-receptor-positive tumors. Most triple-negative studies employed the MDA-MB-231 cell line, which is considered the prototypical model for aggressive, invasive breast cancer. A few studies also extended findings to other TNBC lines such as MDA-MB-468 and BT-549, and to the murine 4T1 model. Most others have been tested in both hormone-dependent and triple-negative models, showing broader anticancer potential.

Several medicinal plants have demonstrated promising anticancer activity against breast cancer cells through diverse mechanisms.

Out of the 30 medicinal plants reviewed, roughly 20–22 exhibit **apoptosis or anti-proliferative activity** in breast cancer cells. Exceptions include Hemidesmus indicus, Piper nigrum, and Ferula assa-foetida, which primarily act through anti-proliferative mechanisms without directly inducing apoptosis, as well as Flax seeds (Linum usitatissimum), Vitis vinifera, Foeniculum vulgare, Smilax zeylanica, and Thespesia populnea, whose anticancer effects are mainly mediated via other mechanisms.

Anti-angiogenic effects have been reported for flax seeds (Linum usitatissimum), Tinospora cordifolia, Centella asiatica, Zingiber officinale, Aegle marmelos, Glycine max, Mimosa pudica, Hemidesmus indicus, Piper nigrum, Aloe barbadensis, and Glycyrrhiza glabra, primarily by suppressing VEGF expression, inhibiting endothelial cell proliferation, and modulating matrix metalloproteinase activity.

Several phytochemicals, including curcumin (Curcuma longa), thymoquinone (Nigella sativa), piperine (Piper nigrum), gingerol (Zingiber officinale), withaferin A (Withania somnifera), resveratrol (vitis vinifera) and bacopa monnieri have shown strong **anti-metastatic** effects by suppressing epithelial–mesenchymal transition (EMT), downregulating MMPs, and inhibiting invasion pathways.

Several medicinal plants have demonstrated **chemo-preventive properties** against breast cancer, including Curcuma longa (curcumin), Vitex vinefera, Zingiber officinale (ginger), Piper nigrum (black pepper), Moringa oleifera, and camelia sinensis. Additionally, **anti-mutagenic activity** has been reported for thymoquinone (Nigella sativa) and allicin (Allium sativum), which protect DNA from mutagen-induced damage, while Ferula assa-foetida shows general anti-mutagenic potential that may contribute to chemoprevention. Anti-mutagenic activity has been reported for thymoquinone (Nigella sativa) and allicin (Allium sativum), which protect DNA from mutagen-induced damage, while Ferula assa-foetida demonstrates general anti-mutagenic potential that may contribute to chemoprevention.

Conclusion

The medicinal plants reviewed in this article exhibit significant anticancer activity against breast cancer cells. Most of these plants have been investigated in *in vitro* studies, demonstrating promising therapeutic potential. While modern medicine provides effective treatment options, the incorporation of herbal medicines may further enhance clinical outcomes. Integrative approaches that combine conventional therapies with plant-based remedies offer considerable promise for the future management of life-threatening diseases such as cancer.

References

- 1) World Health Organization. Breast cancer [Internet]. Geneva: World Health Organization; 2025 Aug 14 [cited 2025 Sep 9]. Available from: https://www.who.int/news-room/fact-sheets/detail/breast-cancer
- 2) United Nations. Breast cancer cases projected to rise by nearly 40 per cent by 2050, WHO warns [Internet]. UN News. 2025 Feb 24 [cited 2025 Sep 9]. Available from: https://news.un.org/en/story/2025/02/1151032
- 3) Breast Cancer Research Foundation. Breast cancer statistics and resources [Internet]. New York: BCRF; c2025 [cited 2025 Sep 9]. Available from: https://www.bcrf.org/breast-cancer-statistics-and-resources/
- 4) World Health Organization, International Agency for Research on Cancer. Breast cancer cases and deaths are projected to rise globally [press release]. Lyon: IARC; 2025 Feb 24. Press Release No.: 361. Available from: https://www.iarc.who.int/news-events/breast-cancer-cases-and-deaths-are-projected-torise-globally/
- 5) Cytecare Hospitals. Statistics of breast cancer in India [Internet]. Bengaluru: Cytecare Hospitals; [cited 2025 Sep 11]. Available from: https://cytecare.com/blogs/statistics-of-breast-cancer-in-india/
- 6) BreastCancerIndia.net. Breast cancer statistics: India versus the world comparison of global statistics from GLOBOCAN 2018 [Internet]. [cited 2025 Sep 11]. Available from: https://www.breastcancerindia.net/statistics/stat_global.html
- 7) Sathishkumar K, Sankarapillai J, Mathew A, Nair RA, Gangane N, Khuraijam S, Barmon D, Pandya S, Majumdar G, Deshmane V, Zomawia E. Breast cancer survival in India across 11 geographic areas under the National Cancer Registry Programme. Cancer. 2024 May 15;130(10):1816-25.
- 8) Indian Council of Medical Research National Institute of Cancer Prevention and Research. Ministry of Health and Family Welfare, Government of India [Internet]. Noida: ICMR-NICPR; [cited 2025 Sep 11]. Available from: https://nicpr.icmr.org.in

- 9) Globocan 2020. Breast Cancer: Hitting lacs of lives every year in India. International Agency for Research on Cancer, World Health Organization; 2020.
- 10) Gupta S, Batra A, Prinja S, Malhotra H, Mohanapriya T, Thomas S, Chatterjee S, Shet T, Mathew B S. NAMS task force report on breast cancer in India. Ann Natl Acad Med Sci (India). 2025;61(2):132-40. doi:10.25259/ANAMS TFR 14 2024.
- 11) Orrantia-Borunda E, Anchondo-Nuñez P, Acuña-Aguilar LE, Gómez-Valles FO, Ramírez-Valdespino CA. Subtypes of breast cancer. Breast Cancer [Internet]. 2022 Aug 6.
- 12) National Cancer Institute. Drugs approved for breast cancer [Internet]. Bethesda (MD): National Cancer Institute; 2025 Feb 24 [cited 2025 Sep 11]. Available from: https://www.cancer.gov/about-cancer/treatment/drugs/breast
- 13) Chitra SM, Anbu N, Uma KS. Antihypertensive activity of polyherbal siddha formulation veppampoo mathirai-A review. Research Journal of Pharmacy and Technology. 2022;15(3):1365-70.
- 14) Calado A, Neves PM, Santos T, Ravasco P. The effect of flaxseed in breast cancer: a literature review. Frontiers in nutrition. 2018 Feb 7;5:4.
- 15) Mason JK, Fu M, Chen J, Thompson LU. Flaxseed oil enhances the effectiveness of trastuzumab in reducing the growth of HER2-overexpressing human breast tumors (BT-474). The Journal of nutritional biochemistry. 2015 Jan 1;26(1):16-23.
- 16) Ezzat SM, Shouman SA, Elkhoely A, Attia YM, Elsesy MS, El Senousy AS, Choucry MA, El Gayed SH, El Sayed AA, Sattar EA, El Tanbouly N. Anticancer potentiality of lignan rich fraction of six Flaxseed cultivars. Scientific Reports. 2018 Jan 11;8(1):544.
- 17) Song X, Zhang M, Dai E, Luo Y. Molecular targets of curcumin in breast cancer. Molecular medicine reports. 2019 Jan;19(1):23-9.
- 18) Barcelos KA, Mendonça CR, Noll M, Botelho AF, Francischini CR, Silva MA. Antitumor properties of curcumin in breast cancer based on preclinical studies: a systematic review. Cancers. 2022 Apr 26;14(9):2165.
- 19) Shanmugam MK, Ahn KS, Hsu A, Woo CC, Yuan Y, Tan KH, Chinnathambi A, Alahmadi TA, Alharbi SA, Koh AP, Arfuso F. Thymoquinone inhibits bone metastasis of breast cancer cells through abrogation of the CXCR4 signaling axis. Frontiers in pharmacology. 2018 Dec 4;9:1294.
- 20) Woo CC, Hsu A, Kumar AP, Sethi G, Tan KH. Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: the role of p38 MAPK and ROS. PloS one. 2013 Oct 2;8(10):e75356.
- 21) Pandey P, Khan F, Alshammari N, Saeed A, Aqil F, Saeed M. Updates on the anticancer potential of garlic organosulfur compounds and their nanoformulations: Plant therapeutics in cancer management. Frontiers in pharmacology. 2023 Mar 20;14:1154034.
- 22) Annisa Y, Rosyadah N, Kamila FS, Ulfa SM, Lestari SR, Widodo N. Evaluation of Tinospora cordifolia stem extract bioactive content and anticancer activity against breast cancer cells. InBIO Web of Conferences 2025 (Vol. 154, p. 03010). EDP Sciences.
- 23) Rashmi KC, Raj MH, Paul M, Girish KS, Salimath BP, Aparna HS. A new pyrrole based small molecule from Tinospora cordifolia induces apoptosis in MDA-MB-231 breast cancer cells via ROS mediated mitochondrial damage and restoration of p53 activity. Chemico-biological interactions. 2019 Feb 1;299:120-30.
- 24) Rashmi KC, Atreya HS, Raj MH, Salimath BP, Aparna HS. A pyrrole-based natural small molecule mitigates HSP90 expression in MDA-MB-231 cells and inhibits tumor angiogenesis in mice by inactivating HSF-1. Cell Stress and Chaperones. 2017 Sep 1;22(5):751-66.
- 25) Ansari JA, Rastogi N, Ahmad MK, Mahdi AA, Khan AR, Thakur R, Srivastava VK, Mishra DP, Fatima N, Khan HJ, Waseem M. ROS mediated pro-apoptotic effects of Tinospora cordifolia on breast cancer cells. Front Biosci (Elite Ed). 2017 Jan 1;9:89-100.
- 26) Roudbari LS, Eslami M, Movahedi M, Golab F. Evaluation of the anti-metastatic effect of foeniculum vulgare on the protein expression of HSP 70 & 90 in Balb/c mice with 4t1 model of breast cancer. Asian Pacific journal of cancer prevention: APJCP. 2023;24(3):833.
- 27) Kaur H. Boerhaavia diffusa: Bioactive compounds and pharmacological activities. Biomedical and Pharmacology Journal. 2019 Dec 28;12(4):1675-82.
- 28) Sinan KI, Akpulat U, Aldahish AA, Celik Altunoglu Y, Baloglu MC, Zheleva-Dimitrova D, Gevrenova R, Lobine D, Mahomoodally MF, Etienne OK. LC-MS/HRMS Analysis, Anti-Cancer, Anti-enzymatic and Anti-oxidant effects of Boerhavia diffusa extracts: a potential raw material for functional applications. Antioxid (Basel). 2021; 10: 2003 [Internet]. 2021

- 29) Dhanraj K, Saravanan R, Hameed SA, Ramalingam S. Evaluation of anticancer potential of Vitus vinifera seed against breast cancer cells-MDA-MB-231. Pharmacognosy Journal. 2012;12(5).
- 30) Tsantila EM, Esslinger N, Christou M, Papageorgis P, Neophytou CM. Antioxidant and anticancer activity of Vitis vinifera extracts in breast cell lines. Life. 2024 Feb 6;14(2):228.
- 31) Babykutty S, Padikkala J, Sathiadevan P, Vijayakurup V, Azis T, Srinivas P, Gopala S. Apoptosis induction of Centella asiatica on human breast cancer cells. African Journal of Traditional, Complementary and Alternative Medicines.
- 32) Guo M, Ying Y, Chen Y, Miao X, Yu Z. Asiaticoside inhibits breast cancer progression and tumor angiogenesis via YAP1/VEGFA signal pathway. Heliyon. 2024 Sep 30;10(18).
- 33) Usman AN, Manju B, Ilhamuddin I, Ahmad M, Ab T, Ariyandy A, Budiaman B, Eragradini AR, Hasan II, Hashim S, Sartini S. Ginger potency on the prevention and treatment of breast cancer. Breast Disease. 2023 Jul 7;42(1):207-12.
- 34) Wardana AP, Kristanti AN, Aminah NS, Fahmi MZ, Raoov M, Indriani. Breast Cancer Chemoprevention from Nano Zingiber officinale Roscoe. International Journal of Nanomedicine. 2024 Dec 31:11039-53.
- 35) Gasmi A, Gasmi Benahmed A, Shanaida M, Chirumbolo S, Menzel A, Anzar W, Arshad M, Cruz-Martins N, Lysiuk R, Beley N, Oliinyk P. Anticancer activity of broccoli, its organosulfur and polyphenolic compounds. Critical Reviews in Food Science and Nutrition. 2024 Aug 28;64(22):8054-72.
- 36) Li Y, Zhang T, Korkaya H, Liu S, Lee HF, Newman B, Yu Y, Clouthier SG, Schwartz SJ, Wicha MS, Sun D. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clinical Cancer Research. 2010 May 1;16(9):2580-90.
- 37) Kaboli PJ, Khoshkbejari MA, Mohammadi M, Abiri A, Mokhtarian R, Vazifemand R, Amanollahi S, Sani SY, Li M, Zhao Y, Wu X. Targets and mechanisms of sulforaphane derivatives obtained from cruciferous plants with special focus on breast cancer—contradictory effects and future perspectives. Biomedicine & Pharmacotherapy. 2020 Jan 1;121:109635.
- 38) Neha R, Sridevi G, Selvaraj J, Preetha S. Evaluation of anticancer effect of Aegle marmelos in human breast cancer cells by in-vitro analysis. Journal of Pharmaceutical Research International. 2021;33:464-71.
- 39) Akhouri V, Kumari M, Kumar A. Therapeutic effect of Aegle marmelos fruit extract against DMBA induced breast cancer in rats. Scientific reports. 2020 Oct 22;10(1):18016.
- 40) Cappelletti V, Fioravanti L, Miodini P, Di Fronzo G. Genistein blocks breast cancer cells in the G2M phase of the cell cycle. Journal of cellular biochemistry. 2000 Dec 15;79(4):594-600.
- 41) Konstantinou EK, Gioxari A, Dimitriou M, Panoutsopoulos GI, Panagiotopoulos AA. Molecular pathways of genistein activity in breast cancer cells. International Journal of Molecular Sciences. 2024 May 20;25(10):5556.
- 42) John R, Kariyil BJ, Usha PA, Surya S, Anu G, John P, Sujith S, Zarina A. In vitro antitumor potential of methanol extract of Mimosa pudica in human breast cancer cell lines. Pharmacognosy Magazine. 2020;16(70).
- 43) Ahmad H, Sehgal S, Mishra A, Gupta R. Mimosa pudica L.(Laajvanti): an overview. Pharmacognosy reviews. 2012 Jul;6(12):115.
- 44) Lalande M. A reversible arrest point in the late G1 phase of the mammalian cell cycle. Experimental cell research. 1990 Feb 1;186(2):332-9.
- 45) Singh RK, Ranjan A, Tripathi R, Verma SS, Sharma V, Singh M, Gupta SC, Singh AK, Singh SK. Semecarpus anacardium Linn. leaf extract exhibits activities against breast cancer and prolongs the survival of tumor bearing mice. BioRxiv. 2020 Jan 9:2020-01.
- 46) Turrini E, Ferruzzi L, Guerrini A, Gotti R, Tacchini M, Teti G, Falconi M, Hrelia P, Fimognari C. In vitro anti-angiogenic effects of Hemidesmus indicus in hypoxic and normoxic conditions. Journal of ethnopharmacology. 2015 Mar 13;162:261-9.
- 47) Sena S, Van Staden J, Kumar V, Husen A. Hemidesmus indicus (L.) R. Br. ex Schult as natural bioactive products: An evidence-based review focused on inflammation related cancer prevention potential. Current Research in Biotechnology. 2023 Jan 1;6:100165.
- 48) Bansod AA, Ramasamy G, Nathan B, Kandhasamy R, Palaniappan M, Vichangal Pridiuldi S. Exploring the endogenous potential of Hemidesmus indicus against breast cancer using in silico studies and quantification of 2-hydroxy-4-methoxy benzaldehyde through RP-HPLC. 3 Biotech. 2021 May;11(5):235.

- 49) Kuruppu AI, Paranagama P, Goonasekara CL. Medicinal plants commonly used against cancer in traditional medicine formulae in Sri Lanka. Saudi Pharmaceutical Journal. 2019 May 1;27(4):565-73.
- 50) Boonsri S, Karalai C, Ponglimanont C, Chantrapromma S, Kanjana-Opas A. Cytotoxic and antibacterial sesquiterpenes from Thespesia populnea. Journal of natural products. 2008 Jul 25;71(7):1173-7.
- 51) Gopalakrishnan A, Kariyil BJ, John R, Usha PA. Phytochemical evaluation and cytotoxic potential of chloroform soluble fraction of methanol extract of Thespesia populnea in human breast cancer cell lines. Pharmacognosy Magazine. 2019;15(62).
- 52) Baliga MS, Dsouza JJ. Amla (Emblica officinalis Gaertn), a wonder berry in the treatment and prevention of cancer. European Journal of Cancer Prevention. 2011 May 1;20(3):225-39.
- 53) Singh D, Verma A, Anwar F, Al-Abbasi FA, Kumar V. Biogenic synthesis of ferric nanoparticles of Phyllanthus emblica exhibited breast cancer effect via alteration of mTOR/Maf-1/PTEN signaling pathway. Biocatalysis and Agricultural Biotechnology. 2024 Feb 1;56:103007.
- 54) Zhao T, Sun Q, Marques M, Witcher M. Anticancer properties of Phyllanthus emblica (Indian gooseberry). Oxidative medicine and cellular longevity. 2015;2015(1):950890.
- 55) Do MT, Kim HG, Choi JH, Khanal T, Park BH, Tran TP, Jeong TC, Jeong HG. Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells. Food chemistry. 2013 Dec 1;141(3):2591-9.
- 56) Abdelhamed S, Yokoyama S, Refaat A, Ogura K, Yagita H, Awale S, Saiki I. Piperine enhances the efficacy of TRAIL-based therapy for triple-negative breast cancer cells. Anticancer Research. 2014 Apr 1;34(4):1893-9.
- 57) Umapathy VR, Dhanavel A, Kesavan R, Natarajan PM, Bhuminathan S, Vijayalakshmi P. Anticancer Potential of the Principal Constituent of Piper nigrum, Piperine: A Comprehensive.
- 58) Jeong CH, Ryu H, Kim DH, Cheng WN, Yoon JE, Kang S, Han SG. Piperlongumine induces cell cycle arrest via reactive oxygen species accumulation and IKKβ suppression in human breast cancer cells. Antioxidants. 2019 Nov 14;8(11):553.
- 59) Kumar S, Mathew SO, Aharwal RP, Tulli HS, Mohan CD, Sethi G, Ahn KS, Webber K, Sandhu SS, Bishayee A. Withaferin A: A pleiotropic anticancer agent from the Indian medicinal plant Withania somnifera (L.) Dunal. Pharmaceuticals. 2023 Jan 22;16(2):160.
- 60) Daud MM, Ibrahim MJ, Froemming GR, Hasani NA. P121 The anti proliferative effect of Aloin and Aloe emodin on MCF-7 and MDA-MB-231 breast cancer cells. The Breast. 2011 Mar 1;20:S22.
- 61) Manirakiza A, Irakoze L, Manirakiza S. Aloe and its effects on cancer: a narrative literature review. East African Health Research Journal. 2021 Sep 9;5(1):1-6.
- 62) Chang HC, Chen ST, Chien SY, Kuo SJ, Tsai HT, Chen DR. Capsaicin may induce breast cancer cell death through apoptosis-inducing factor involving mitochondrial dysfunction. Human & experimental toxicology. 2011 Oct;30(10):1657-65.
- 63) Thoennissen NH, O'kelly J, Lu D, Iwanski GB, La DT, Abbassi S, Leiter A, Karlan B, Mehta R, Koeffler HP. Capsaicin causes cell-cycle arrest and apoptosis in ER-positive and-negative breast cancer cells by modulating the EGFR/HER-2 pathway. Oncogene. 2010 Jan;29(2):285-96.
- 64) Tuli HS, Garg VK, Mehta JK, Kaur G, Mohapatra RK, Dhama K, Sak K, Kumar A, Varol M, Aggarwal D, Anand U. Licorice (Glycyrrhiza Glabra L.)-Derived Phytochemicals Target Multiple Signaling Pathways to Confer Oncopreventive and Oncotherapeutic Effects [Corrigendum]. OncoTargets and Therapy. 2024 Jan 17;17:1-2.
- 65) Moremane MM, Abrahams B, Tiloke C. Moringa oleifera: A review on the antiproliferative potential in breast cancer cells. Current Issues in Molecular Biology. 2023 Aug 18;45(8):6880-902.
- 66) Sultan R, Ahmed A, Wei L, Saeed H, Islam M, Ishaq M. The anticancer potential of chemical constituents of Moringa oleifera targeting CDK-2 inhibition in estrogen receptor positive breast cancer using in-silico and in vitro approches. BMC Complementary Medicine and Therapies. 2023 Nov 4:23(1):396.
- 67) Sirizi MA, Ghalenoei JA, Allahtavakoli M, Forouzanfar H, Bagheri SM. Anticancer potential of Ferula assa-foetida and its constituents, a powerful plant for cancer therapy. World journal of biological chemistry. 2023 Mar 27;14(2):28.
- 68) Yap KM, Sekar M, Seow LJ, Gan SH, Bonam SR, Mat Rani NN, Lum PT, Subramaniyan V, Wu YS, Fuloria NK, Fuloria S. Mangifera indica (Mango): a promising medicinal plant for breast cancer therapy and understanding its potential mechanisms of action. Breast Cancer: Targets and Therapy. 2021 Sep 13:471-503.

- 69) Mallick MN, Akhtar MS, Najm MZ, Tamboli ET, Ahmad S, Husain SA. Evaluation of anticancer potential of Bacopa monnieri L. against MCF-7 and MDA-MB 231 cell line. Journal of Pharmacy and Bioallied Sciences. 2015 Oct 1;7(4):325-8.
- 70) Palethorpe HM, Smith E, Tomita Y, Nakhjavani M, Yool AJ, Price TJ, Young JP, Townsend AR, Hardingham JE. Bacopasides I and II act in synergy to inhibit the growth, migration and invasion of breast cancer cell lines. Molecules. 2019 Sep 30;24(19):3539.
- 71) Marín V, Burgos V, Pérez R, Maria DA, Pardi P, Paz C. The potential role of epigallocatechin-3-gallate (EGCG) in breast cancer treatment. International journal of molecular sciences. 2023 Jun 27;24(13):10737.