OPEN ACCESS

The Role Of Paramedics In The Early Recognition And Management Of Anaphylaxis

Fahad Mutlaq Nasser Alotaibi ⁽¹⁾, Rasheed Ali Rasheed Alazmi ⁽²⁾, Bader Dhifallah Alotaibi ⁽³⁾, Garnas Hilal Alotaibi ⁽⁴⁾, Abdullh Hamed Alenzi ⁽⁵⁾, Fawaz Maqed Mazad Alotabi ⁽⁶⁾, Mousa Mohammed H Alharbi ⁽⁷⁾, Salman Suliman Anbwen Alenzi ⁽⁸⁾, Saleem Ahmed Saleem Alqanbar ⁽⁹⁾, Ali Hashim Ali Aladres ⁽¹⁰⁾, Mohammed Ahmed Ali Almutawa ⁽¹¹⁾

Emergency Medicine Technician, Saudi Red Crescent Authority - Riyadh Region - Al-Dawadmi Sector, Kingdom of Saudi Arabia.

Emergency Medicine Technician, Saudi Red Crescent Authority - Riyadh Region - Al-Dawadmi Sector.

Emergency Medicine Technician, Saudi red crescent authority-riyadh region-al-dawadmi sector.

- Emergency Medicine Technician, Saudi Red Crescent Authority Riyadh Region Al-Dawadmi Sector.
 - Paramedic, Saudi Red Crescent, Kingdom of Saudi Arabia.
 - 6. Saudi Red Crescent, Kingdom of Saudi Arabia. EMT, Saudi Red Crescent, Kingdom of Saudi Arabia.
 - Paramedic, Saudi Red Crescent, Kingdom of Saudi Arabia.
 - 9. Emergency Medical services, Saudi Red Crescent, Kingdom of Saudi Arabia.
 - 10. Emergency Medical Technician, Saudi Red Crescent, Kingdom of Saudi Arabia.
 - 11. Emergency Medical Technician, Saudi Red Crescent, Kingdom of Saudi Arabia.

Abstract

Anaphylaxis is a severe, life-threatening systemic hypersensitivity reaction that requires prompt recognition and management. Paramedics play a crucial role in the early identification and treatment of anaphylaxis in the prehospital setting. This review explores the pathophysiology, clinical presentation, and management of anaphylaxis, focusing on the critical role of paramedics in improving patient outcomes. Anaphylaxis involves complex immune mechanisms, primarily mediated through mast cells and basophils, leading to the release of inflammatory mediators that affect multiple organ systems. Prompt recognition of anaphylaxis can be challenging, as symptoms may vary and can be atypical or delayed. Paramedics must be trained to recognize the signs and symptoms rapidly and to follow established protocols for treatment. The cornerstone of management is the immediate administration of epinephrine, which significantly reduces the risk of fatal outcomes. Paramedics also play a vital role in providing adjunctive treatments, such as oxygen, antihistamines, corticosteroids, and intravenous fluids, as well as advanced airway management when necessary. Effective training and adherence to evidence-based guidelines are essential to ensure that paramedics are prepared to manage anaphylaxis in the prehospital setting. Challenges and gaps in practice, such as inconsistent guideline adherence, limited access to epinephrine auto-injectors, and knowledge gaps in recognizing atypical presentations, need to be addressed to improve the quality and consistency of care. Collaboration among healthcare professionals, robust reporting systems, and community education are necessary for a comprehensive approach to anaphylaxis management. Future directions, including AIassisted diagnostic tools, telemedicine support, and portable biomarker devices, have the potential to enhance the role of paramedics in the early recognition and management of anaphylaxis.

Keywords Anaphylaxis, Paramedics, Early recognition, Prehospital care, Emergency medicine, Epinephrine administration, Allergic reactions.

1. Introduction

1.1 Definition and Pathophysiology of Anaphylaxis

Anaphylaxis is a severe, acute, life-threatening systemic hypersensitivity reaction characterized by rapid onset and potentially fatal airway, breathing, or circulatory compromise. It results from the sudden release of inflammatory mediators such as histamine, leukotrienes, and platelet-activating factor from mast cells and basophils, typically triggered by immunoglobulin E (IgE)-mediated mechanisms on re-exposure to allergens after prior sensitization. These mediators cause vasodilation, increased vascular permeability, bronchospasm, and mucosal edema, resulting in clinical features such as urticaria, angioedema, hypotension, and bronchospasm. Non-immunologic mechanisms can also cause similar mediator release without IgE involvement, but clinically indistinguishable presentations occur (McLendon & Sternard, 2023).

1.2 Global Epidemiology and Incidence Trends

The global incidence of anaphylaxis is approximately 46 cases per 100,000 persons per year, with variation by region: Europe reports the highest rates (~71/100,000), followed by North America (~43/100,000), Australia (~17/100,000), and Asia (~8/100,000). Data typically derive from hospital admissions and emergency presentations, which likely underestimate community incidence. Notably, incidence rates have increased in several countries over recent decades, driven especially by food and medication-related anaphylaxis, and children show rising trends in hospitalizations. Overall mortality remains low but stable, at roughly 0.5 to 1 per million annually in many regions (Li et al., 2024).

1.3 Common Allergens and Risk Factors

Common triggers include food allergens such as nuts, milk, eggs, fish, shellfish, and wheat; insect venom from bees and wasps; medications including antibiotics and NSAIDs; latex; and, less frequently, physical factors like exercise or temperature changes. Cofactors amplifying risk and severity include exercise, stress, infections, mast cell disorders, asthma, advanced age, and delays in adrenaline administration. Cross-reactive allergens and first-exposure reactions due to IgE cross-reactivity have also been reported. Recurrent anaphylaxis episodes occur in a high proportion of patients due to incomplete allergen avoidance or unknown triggers (DuToit et al., 2024).

1.4 Mortality and Morbidity Statistics

Population-based studies estimate anaphylaxis-related mortality rates around 0.63 to 0.76 per million per year, with case fatality rates (death among hospitalized patients) between 0.25% and 0.33%. Most deaths are associated with delayed recognition or treatment. Medications account for about 58.8% of fatalities, while insect venom causes about 72 deaths yearly in some countries. Rapid respiratory or cardiovascular collapse may develop within minutes, underscoring the need for immediate intervention (Ma et al., 2014).

1.5 Importance of Rapid Response and the Prehospital Environment

Anaphylaxis progresses rapidly, making early recognition and immediate treatment critical to prevent fatal outcomes. Epinephrine administered intramuscularly is the first-line, life-saving treatment with no absolute contraindications. Delays in epinephrine administration correlate strongly with worse outcomes and increased biphasic reactions. Optimal patient positioning and airway support are also essential. Because many anaphylactic events occur outside hospital settings, effective prehospital care significantly influences morbidity and mortality (Whyte et al., 2022).

1.6 Rationale for Focusing on Paramedics as First-Line Responders

Paramedics serve as critical first-line healthcare providers within the prehospital environment, often being the earliest medical personnel to assess and manage anaphylaxis. Their role includes rapid recognition based on clinical signs, timely administration of intramuscular epinephrine, airway management, and immediate transport to definitive care. Studies highlight gaps in layperson recognition of anaphylaxis, emphasizing paramedics' importance in bridging this gap through expertise. Early intervention by paramedics can reduce

progression to respiratory or cardiac arrest, improving survival and decreasing morbidity. Their actions also include educating patients and families about anaphylaxis management post-event (Meyran et al., 2023).

2. Pathophysiology of Anaphylaxis

Anaphylaxis is a rapid, severe, and potentially life-threatening systemic hypersensitivity reaction. It involves complex immune mechanisms primarily mediated through mast cells and basophils. Understanding the pathophysiology is critical for paramedics in the early recognition and management of anaphylaxis to prevent fatal outcomes (Reber et al., 2017).

2.1 Immune Mechanisms: IgE-mediated and Non-IgE-mediated Pathways

The classical mechanism of anaphylaxis is the IgE-mediated pathway, where allergen-specific IgE antibodies bind to the high-affinity FcɛRI receptors on mast cells and basophils. Upon allergen exposure, cross-linking of these IgE molecules triggers rapid degranulation, releasing a multitude of inflammatory mediators (Worm et al., 2025).

However, anaphylaxis can also occur via non-IgE-mediated pathways, which do not require sensitization or IgE antibodies. These include:

- Activation of mast cells through Mas-related G protein-coupled receptor X2 (MRGPRX2) by drugs (e.g., neuromuscular blockers, opiates).
- Immune complex formation involving IgG antibodies interacting with Fc gamma receptors on immune cells.
- Complement system activation leading to anaphylatoxin release.

Non-IgE mechanisms are often implicated in drug-induced anaphylaxis and may occur on first exposure without prior sensitization (Worm et al., 2025).

2.2 Mast Cell and Basophil Activation

Mast cells and basophils, both granulocytes, are central effector cells in anaphylaxis. They reside in tissues (mast cells) and circulate in blood (basophils). Upon activation, these cells rapidly degranulate, releasing mediators stored in cytoplasmic granules and newly synthesized molecules. Key features:

- Mast cells predominantly locate near blood vessels and nerves, allowing systemic mediator effects.
- Basophils circulate in peripheral blood and contribute significantly, especially in food-triggered anaphylaxis.

Activation occurs either by IgE cross-linking or non-IgE triggers, such as MRGPRX2 stimulation. The mast cell survival and proliferation depend heavily on stem cell factor (SCF) (Pałgan, 2023).

2.3 Release of Mediators

Activated mast cells and basophils release a range of mediators that cause the characteristic signs and symptoms of anaphylaxis:

- **Histamine:** Causes vasodilation, increased vascular permeability, bronchoconstriction, and stimulates sensory nerves causing itching and pain.
- **Tryptase:** A protease that serves as a biomarker for mast cell activation; it can induce inflammation and activate protease-activated receptors on sensory neurons.
- Platelet-activating factor (PAF): Potent mediator causing bronchoconstriction, hypotension, and platelet aggregation.

- Leukotrienes and prostaglandins: Further the inflammation and smooth muscle contraction.
- **Serotonin:** Contributes to bronchoconstriction and vascular changes.

These mediators collectively affect multiple organ systems, particularly respiratory, cardiovascular, and gastrointestinal systems (Fernandez-Bravo et al., 2022).

2.4 Effects on Organ Systems

a. Respiratory System

Mediators induce bronchoconstriction, laryngeal edema, and increased mucus secretion, presenting clinically as wheezing, stridor, and respiratory distress. Parasympathetic activation via released serotonin further exacerbates bronchoconstriction (McLendon & Sternard, 2023).

b. Cardiovascular System

Vasodilation and increased vascular permeability lead to hypotension and distributive shock. Mediators can cause myocardial ischemia, arrhythmias, and coronary artery vasospasm, potentially contributing to acute cardiac events during anaphylaxis. Calcitonin gene-related peptide (CGRP) is thought to exert cardioprotective effects by counteracting vasoconstriction. Cardiovascular effects significantly impact prognosis and require immediate correction (Triggiani et al., 2008).

c. Gastrointestinal System

The release of mediators increases intestinal permeability and smooth muscle contraction, causing abdominal pain, vomiting, and diarrhea (Nuñez-Borque et al., 2022).

2.5 Rapid Progression and Biphasic/Protracted Reactions

Anaphylaxis typically develops rapidly within minutes. However, biphasic anaphylaxis involves a recurrence of symptoms hours after initial resolution without further exposure to the allergen. This second phase may occur within 1 to 8 hours and affects approximately 20% of patients. Protracted anaphylaxis is characterized by prolonged symptoms lasting several hours or days despite treatment. These phenomena underscore the need for extended monitoring after symptom resolution, as recurrent or persistent anaphylaxis can be life-threatening (Oya et al., 2014).

3. Clinical Presentation of Anaphylaxis

Recognizing the clinical presentation of anaphylaxis is crucial for paramedics because rapid identification leads to prompt treatment, which can be life-saving. Anaphylaxis typically involves multiple organ systems, and symptoms can evolve quickly, often within minutes to an hour after allergen exposure. This section reviews the common signs and symptoms paramedics should identify, as well as atypical or delayed presentations that pose diagnostic challenges (Gudichsen et al., 2024).

3.1 Common Signs and Symptoms

a. Skin Manifestations

The most frequent and recognizable signs appear on the skin, including urticaria (hives) and angioedema (deep tissue swelling). Approximately 80–90% of patients exhibit skin involvement such as generalized itching, flushing, and swelling, often serving as early alerts to paramedics. However, skin symptoms may sometimes have a delayed onset compared to respiratory symptoms (Poziomkowska-Gęsicka & Kurek, 2020).

b. Respiratory Compromise

Respiratory symptoms are critical and may include wheezing caused by bronchospasm, stridor indicating upper airway obstruction due to swelling, hoarseness, and difficulty breathing. These signs suggest airway compromise, one of the most dangerous clinical features requiring immediate intervention (McLendon & Sternard, 2023).

c. Cardiovascular Instability

Cardiovascular signs include hypotension, syncope (fainting), tachycardia, and in severe cases, shock. Hypotension can sometimes be the sole presenting feature, especially in atypical forms, making vigilance essential. Cardiovascular collapse results from vasodilation and fluid leakage triggered by mast cell degranulation (Poziomkowska-Gęsicka & Kurek, 2020).

d. Gastrointestinal Symptoms

Less commonly, patients may present with nausea, vomiting, abdominal pain, and diarrhea. These symptoms occur in approximately 25-30% of anaphylaxis cases and may be overlooked during initial assessment (Poziomkowska-Gęsicka & Kurek, 2020).

3.2 Atypical and Delayed Presentations

a. Isolated Hypotension

In some cases, hypotension without skin or respiratory symptoms may be the only sign, making early recognition challenging for paramedics. This atypical presentation requires maintaining a high index of suspicion, especially when rapid cardiovascular deterioration occurs after allergen exposure (O'Neill et al., 2024).

b. Presentation Without Skin Involvement

Approximately 10-20% of anaphylaxis cases may present without the characteristic skin findings, complicating diagnosis. Early recognition depends on identifying respiratory distress or cardiovascular symptoms in the absence of urticaria or angioedema (O'Neill et al., 2024).

c. Biphasic and Delayed Reactions

Anaphylaxis may have biphasic reactions, where symptoms recur hours (typically 8-11 hours) after initial resolution. This underscores the importance of continuous monitoring post-initial treatment. Delayed presentations, especially in patients on immunosuppressive therapy, present further diagnostic challenges (Nepal et al., 2025).

4. Early Recognition in the Prehospital Setting

Early recognition of anaphylaxis by paramedics in the prehospital setting is critical to improving survival rates and reducing neurologic complications. This section explores the importance of timely diagnosis, the screening and decision criteria commonly used by paramedics, and the obstacles they face when identifying anaphylaxis in varied patient populations (Meyran et al., 2023).

4.1 Importance of Timely Diagnosis

Anaphylaxis is a rapid-onset, life-threatening allergic reaction with a risk of fatality if not promptly treated. Timely administration of intramuscular epinephrine significantly improves survival and neurologic outcomes in affected patients. Delays longer than 20 minutes in delivering epinephrine substantially increase the risk of fatal or near-fatal reactions. Rapid recognition and early intervention by paramedics reduce morbidity by preventing progression to severe hypotension, airway compromise, and shock. Given that anaphylaxis symptoms can escalate within minutes, the prehospital period is crucial for patient stabilization (Meyran et al., 2023).

4.2 Screening and Decision Criteria Used by Paramedics

Paramedics utilize international clinical guidelines and decision trees to standardize early recognition and management. Leading protocols such as those from the Resuscitation Council UK (RCUK) and the World Allergy Organization (WAO) outline diagnostic criteria based on sudden onset of symptoms affecting the skin, respiratory, cardiovascular, or gastrointestinal systems. The WAO 2020 criteria emphasize recognition even in the absence of typical skin features if hypotension or bronchospasm occurs after allergen exposure. These guidelines support a low threshold for epinephrine use to minimize treatment delays (Whyte et al., 2022).

Decision tools guide paramedics through assessment of:

- Sudden onset illness with skin involvement plus respiratory distress, hypotension, or severe gastrointestinal symptoms
- Acute hypotension or bronchospasm after allergen exposure without skin symptoms

Such criteria help paramedics identify anaphylaxis among patients presenting with ambiguous or overlapping symptoms.

4.3 Barriers to Recognition

Despite established criteria, paramedics face challenges recognizing anaphylaxis in the field. The classical triad of dermatitis, respiratory compromise, and hypotension is absent in many cases, complicating diagnosis. Pediatric and geriatric patients often have atypical presentations and communication barriers, hindering history taking and symptom assessment. Additionally, symptoms may mimic asthma exacerbations, panic attacks, or other emergencies, leading to misdiagnosis or delayed epinephrine administration (Fineman et al., 2015).

Limited training frequency and practical exposure to anaphylaxis events further contribute to diagnostic difficulties for paramedics. Studies suggest that targeted education and action plans improve recognition but knowledge retention remains suboptimal after several months (Tiyyagura et al., 2014).

Understanding these barriers is essential for developing tailored interventions that enhance paramedic preparedness and ensure rapid, accurate diagnosis.

5. Role of Paramedics in Prehospital Management of Anaphylaxis

Paramedics play a crucial frontline role in the early recognition and management of anaphylaxis, a severe, potentially life-threatening allergic reaction. Their interventions can be lifesaving by promptly identifying symptoms, administering treatment, and preparing patients for advanced care (Chung et al., 2014).

5.1 Initial Assessment

The initial assessment by paramedics follows the primary survey approach known as ABCDE. Airway, Breathing, Circulation, Disability, Exposure, to rapidly identify and prioritize immediate threats to life. This standardized method helps paramedics assess whether the airway is obstructed (common in anaphylaxis due to swelling), whether breathing is compromised (bronchospasm, wheezing), and signs of circulatory collapse (hypotension, tachycardia) (Gudichsen et al., 2024).

Recognizing anaphylaxis in the prehospital setting can be challenging, given the nonspecific symptoms and overlap with other conditions such as asthma exacerbation or panic attacks. Paramedics consider differential diagnoses while relying heavily on signs such as rapid onset of symptoms following allergen exposure, widespread urticaria, angioedema, respiratory distress, and hypotension (Gudichsen et al., 2024).

5.2 Epinephrine Administration Protocols

Epinephrine is the cornerstone of anaphylaxis treatment. Paramedics follow precise protocols for its administration:

- **Indications**: Clinical signs of airway/breathing/circulation compromise due to anaphylaxis justify immediate epinephrine use.
- **Dosing & Route**: Intramuscular (IM) injection into the anterolateral thigh is the preferred route due to rapid absorption. Adult doses typically range from 0.3 mg to 0.5 mg every 5–10 minutes as needed.
- Auto-injectors vs Manual Injection: Preloaded auto-injectors enable quick, reliable dosing with minimal error, suited for rapid field use. Manual injections require paramedic preparation but allow dose flexibility.

Early administration of epinephrine is consistently associated with better outcomes, reducing hospital admissions and mortality. Protocols emphasize repeating doses after 5 minutes if symptoms persist (Whyte et al., 2022).

5.3 Adjunctive Therapies

While epinephrine addresses the immediate life-threatening effects, adjunctive treatments support recovery:

- Oxygen is administered to patients with respiratory distress or hypotension to optimize tissue oxygenation.
- Antihistamines and corticosteroids are considered third-line therapies and are used mainly to treat cutaneous symptoms or prevent prolonged reactions; they are not substitutes for epinephrine.
- **Intravenous fluids** are crucial in patients presenting with hypotension or shock, helping to restore circulatory volume and improve perfusion.

5.4 Airway Management

Paramedics prepare for potential airway compromise, which can require advanced interventions:

- Use of airway adjuncts like supraglottic devices or endotracheal intubation if swelling leads to airway obstruction.
- Proactive airway assessment and readiness is essential, as delayed airway management can worsen outcomes.

Trained paramedics equipped with appropriate tools can perform these interventions, especially when transport time to definitive care is prolonged (Doeleman et al., 2025).

5.5 Monitoring During Transport

During transport, continuous monitoring is vital:

- Regular assessment of vital signs, pulse oximetry, and ECG helps detect deterioration.
- Observation for biphasic reactions, where symptoms recur after initial resolution, informs decisions about destination and observation duration.

Paramedics also provide comprehensive handover documentation to emergency department staff to ensure continuity of care (Hansen et al., 2020).

6. Training and Competency Standards

6.1 Education Requirements for Paramedics

Paramedics must have a solid foundation in the anatomy, physiology, and immunology relevant to anaphylaxis to understand the systemic allergic reaction mechanisms. This includes knowledge of the immune response at cellular levels, including antigen-antibody interactions and histamine effects. Education should emphasize the recognition of the clinical signs and symptoms of anaphylaxis such as respiratory distress, hemodynamic instability, gastrointestinal and cutaneous manifestations, and neurological symptoms. Training incorporates scenario-based learning and case simulations which improve early recognition skills essential for timely intervention. Studies show that educational sessions significantly enhance paramedics' ability to identify anaphylaxis symptoms and increase confidence in managing acute allergic reactions effectively (Jacobsen et al., 2012).

6.2 Simulation and Continuing Education

High-fidelity simulation training plays a crucial role in paramedic education for managing rare but critical events like anaphylaxis. Simulation scenarios offer a realistic and immersive environment that allows paramedics to rehearse diagnosis, decision-making, and treatment protocols in conditions that mimic real emergencies. In situ simulations conducted in natural work environments improve team coordination and identify workplace-specific challenges, increasing preparedness for real-life situations. Regular simulation training, ideally biannual, helps reinforce skills and ensure competence retention. Furthermore, continuing education programs keep paramedics updated on evolving guidelines and treatment recommendations. Refresher courses focus on the latest advances such as updated adrenaline dosing protocols, airway management techniques, and the use of adjunctive therapies. These educational efforts sustain paramedics' readiness to promptly and safely manage anaphylaxis in prehospital care (Christopher Eric McCoy, 2017).

7. Challenges and Gaps in Practice

The early recognition and management of anaphylaxis by paramedics are critical for patient outcomes, yet there are notable challenges and gaps in current practice that impact care quality and consistency.

7.1 Variations in Guideline Adherence

Paramedic adherence to anaphylaxis treatment guidelines shows significant variation across regions and EMS systems. Many protocols lack up-to-date and comprehensive inclusion of anaphylaxis symptoms, especially atypical ones such as gastrointestinal or neurological manifestations. For example, a study of 30 statewide EMS protocols in the United States showed only 50% included gastrointestinal symptoms like nausea or vomiting, and only 40% included neurologic symptoms such as confusion and lethargy in their anaphylaxis definitions. This inconsistency leads to under-recognition and under-treatment, including delayed or omitted epinephrine administration, which remains the first-line treatment of anaphylaxis. The complexity of varying symptom presentations and the low frequency with which EMS personnel encounter anaphylaxis contribute to inconsistent application of protocols in real-world settings. Another barrier is suboptimal adherence to the administration route and dosages recommended by guidelines. Studies reveal that epinephrine is sometimes administered subcutaneously rather than intranuscularly, reducing its efficacy. Continued education and standardized training are necessary to reinforce guideline adherence among prehospital providers (Ponce Guevara et al., 2018).

7.2 Limited Availability of Epinephrine Auto-Injectors

Limitations in access to epinephrine auto-injectors (EAIs) in some EMS systems and geographic areas represent a significant challenge to timely anaphylaxis treatment. Availability is often constrained by cost, supply issues, and regulatory factors. Globally, EAIs are only commercially available in about 60% of countries surveyed, with scarcity particularly evident in low- and middle-income countries. In some jurisdictions, EMS or public agencies may only provide EAIs through special license arrangements or "named-patient" distributions rather than routine stocking, which can delay administration in emergencies.

www.diabeticstudies.org 246

Importantly, lack of availability on ambulances or delayed replacement after use also affects readiness to treat anaphylaxis promptly. In addition, patchy EMS policies for EAI use and documentation lead to inconsistent care and reporting, which undermines quality improvement efforts (Tanno et al., 2023).

7.3 Knowledge Gaps in Atypical Presentations

Paramedics may face diagnostic challenges due to atypical or less recognized presentations of anaphylaxis. While classical features such as urticaria, respiratory distress, and hypotension are well-known, atypical symptoms including isolated gastrointestinal complaints, neurological changes, or behavioral alterations in children can be easily missed. These atypical manifestations are not consistently incorporated into EMS protocols or education, limiting early identification and timely epinephrine use. There is a critical need for enhanced training to increase awareness and recognition of such presentations. Moreover, uncertainty regarding differential diagnosis, severity assessment, and biphasic or refractory anaphylaxis contributes to challenges in clinical decision-making and observation time management (Dribin et al., 2022).

7.4 Cultural and Language Barriers Affecting Patient Assessment

Cultural differences and language barriers present additional obstacles to effective patient assessment by paramedics in prehospital settings. Miscommunication or misunderstandings may arise when patients or caregivers have limited English proficiency or different health beliefs. Such barriers can hinder accurate history-taking, recognition of symptoms, and patient cooperation, increasing the risk of delayed or inappropriate treatment. Cultural variations in expressing pain, distress, or symptoms can be misinterpreted by EMS providers lacking cultural competence. Studies emphasize the importance of cultural competence training for EMS personnel to improve communication and trust, adapt care plans sensitively, and better serve diverse populations. Utilizing interpreters or community liaisons where possible can mitigate these barriers in emergency care (Müller et al., 2023).

8. Public Health and Systems Perspective

The early recognition and management of anaphylaxis pose significant challenges that extend beyond clinical care, requiring a coordinated public health and systems-based approach. Paramedics, as frontline emergency medical services (EMS) providers, play a pivotal role that is enhanced through their integration into broader allergy action plans and collaborative frameworks within healthcare systems (Pflipsen & Vega Colon, 2020).

8.1 Importance of EMS Integration into Allergy Action Plans

Effective management of anaphylaxis demands prompt intervention with epinephrine administration and stabilization of airway, breathing, and circulation. EMS personnel must be fully integrated into standardized allergy action plans to ensure rapid, evidence-based prehospital care. Such plans, often developed by specialist allergists and endorsed by emergency medical agencies, provide paramedics with clear protocols for identification and treatment of anaphylaxis, including recognition of mild to severe allergic reactions and indications for epinephrine autoinjector use. Integration ensures that paramedics can seamlessly respond in the prehospital environment, significantly reducing morbidity and mortality associated with delayed treatment (Commins, 2017).

8.2 Collaboration Between Paramedics, Emergency Physicians, and Allergists

Collaboration among paramedics, emergency physicians, and allergists is crucial for improving patient outcomes. Paramedics provide initial emergency treatment and stabilization, while emergency physicians deliver advanced diagnostics and management in hospital settings. Allergists contribute expertise in diagnosis, long-term management, and allergy prevention strategies. Partnership models recommend that allergists engage proactively with emergency care providers to develop training programs, update treatment

protocols, and support community education efforts. This interdisciplinary approach enhances protocol adherence, knowledge transfer, and shared care planning (Fineman et al., 2015).

8.3 Tracking and Reporting Anaphylaxis Events for Epidemiological Studies

Robust tracking and reporting mechanisms for anaphylaxis events are essential for understanding incidence, risk factors, and outcomes at population levels. EMS systems should maintain standardized anaphylaxis event records that capture clinical presentation, treatment interventions, and patient response. These data support epidemiological studies that inform public health policies and resource allocation. However, underreporting remains a challenge, necessitating improved surveillance systems and integration of electronic health records to enhance data quality and capture. Such surveillance contributes to identifying emerging trends, such as increases in medication- and food-related anaphylaxis, guiding preventive strategies (Turner et al., 2020).

8.4 Community Education on Recognition and First Aid

Community education led by EMS and allied health professionals is a cornerstone of public health efforts aimed at early recognition and first aid treatment of anaphylaxis. Educational initiatives targeting patients, caregivers, schools, and the general public increase awareness of anaphylaxis signs and symptoms and the critical importance of timely epinephrine administration. Paramedics often participate in outreach programs to teach the use of epinephrine autoinjectors and basic emergency response steps, bridging the gap between onset of allergic reactions and EMS arrival. Evidence suggests that education and action plans significantly improve recognition rates and emergency response in community settings, ultimately reducing anaphylaxis-related fatalities (Muraro & Mendoza Hernandez, 2020).

9. Future Directions

9.1 AI-Assisted Diagnostic Tools in Ambulances

Artificial intelligence (AI), particularly through the use of large language models (LLMs) and machine learning algorithms, holds great potential to enhance anaphylaxis diagnosis in prehospital settings. Studies demonstrate that AI can autonomously identify anaphylaxis cases with high precision and sensitivity by analyzing clinical records and symptom patterns, reducing diagnostic uncertainty for paramedics under time constraints. Integration of AI-powered decision support systems into ambulance protocols could rapidly flag subtle signs of anaphylaxis and optimize early intervention decisions, improving patient safety and outcomes (Ensina et al., 2025).

9.2 Telemedicine Support for Paramedic Decision-Making

Telemedicine enables remote physician support during emergency calls, providing paramedics with expert guidance and real-time consultation opportunities. Clinical trials have shown that tele-EMS (emergency medical service) systems are feasible, safe, and can maintain or improve care quality in life-threatening emergencies, including allergenic reactions. Telemedicine consultations augment paramedic competencies, offering access to diagnostic aids, treatment protocols, and specialist input remotely, thereby enhancing early recognition and treatment of anaphylaxis in the field (Kowark et al., 2023).

9.3 Portable Biomarker Devices to Confirm Anaphylaxis in the Field

The advent of portable diagnostic technologies that detect biomarkers associated with anaphylaxis can revolutionize field diagnosis. Ongoing research includes wearable devices able to monitor physiological and biochemical signals such as histamine levels, providing early alerts of anaphylactic episodes and automating epinephrine delivery. Such devices could drastically reduce time to treatment and improve diagnostic accuracy, especially when clinical signs are ambiguous. The development and deployment of these biomarker sensors in ambulances amplify paramedic capacity for immediate, targeted management (Dass et al., 2020).

9.4 Expanded Role in Post-Resuscitation Patient Education

Paramedics' involvement traditionally focuses on acute management but is expanding to include post-resuscitation education and counseling. Educating patients and caregivers about anaphylaxis triggers, epinephrine auto-injector use, and emergency action plans is critical to preventing recurrent episodes and improving long-term outcomes. Training paramedics in structured patient education and follow-up protocols could address known gaps in knowledge and self-efficacy among patients, especially after prehospital anaphylactic events (Meyran et al., 2023).

Conclusion

Paramedics play a pivotal role in the early recognition and management of anaphylaxis, often determining whether a patient survives this rapidly progressing, life-threatening emergency. Their ability to identify signs and symptoms promptly, administer intramuscular epinephrine without delay, and manage airway and circulatory compromise is central to effective prehospital care. Continued emphasis on education, simulation-based training, and adherence to standardized clinical guidelines ensures that paramedics remain proficient in recognizing both typical and atypical presentations.

However, persistent challenges, including inconsistent protocol adherence, limited access to epinephrine auto-injectors, and knowledge gaps regarding atypical or biphasic reactions, highlight the need for ongoing system-level improvements. Collaboration among paramedics, emergency physicians, and allergists, supported by integrated reporting systems and community education, can strengthen anaphylaxis management and outcomes. Looking ahead, emerging innovations such as AI-assisted diagnostic tools, telemedicine support, and portable biomarker detection devices promise to enhance paramedics' diagnostic accuracy and decision-making in the field.

Ultimately, empowering paramedics through training, technology, and interprofessional collaboration will continue to advance prehospital emergency care and significantly reduce the morbidity and mortality associated with anaphylaxis.

References

- 1. Christopher Eric McCoy, M. D. (2017). Anaphylaxis Simulation. Journal of Education and Teaching in Emergency Medicine. https://doi.org/10.21980/J84S3W
- 2. Chung, T., Gaudet, L., Vandenberghe, C., Couperthwaite, S., Sookram, S., Liss, K., Villa-Roel, C., & Rowe, B. H. (2014). Pre-hospital management of anaphylaxis in one Canadian Urban Centre. Resuscitation, 85(8), 1077–1082. https://doi.org/10.1016/j.resuscitation.2014.04.004
- 3. Commins, S. P. (2017). Outpatient Emergencies: Anaphylaxis. The Medical Clinics of North America, 101(3), 521–536. https://doi.org/10.1016/j.mcna.2016.12.003
- 4. Dass, C., Eyck, P. T., Ballas, Z., & Lee, S. (2020). Characterization of Serum Biomarkers during Anaphylaxis in Emergency Department Patients. The Journal of Allergy and Clinical Immunology. In Practice, 8(9), 3213-3215.e1. https://doi.org/10.1016/j.jaip.2020.05.010
- 5. Doeleman, L. C., de Jong, J. F. F., van Eeden, V. G. M., Schober, P., Hollmann, M. W., & van Schuppen, H. (2025). Airway management by ambulance nurses during out-of-hospital cardiac arrest. Resuscitation Plus, 25, 100999. https://doi.org/10.1016/j.resplu.2025.100999
- Dribin, T. E., Schnadower, D., Wang, J., Camargo, C. A., Michelson, K. A., Shaker, M., Rudders, S. A., Vyles, D., Golden, D. B. K., Spergel, J. M., Campbell, R. L., Neuman, M. I., Capucilli, P. S., Pistiner, M., Castells, M., Lee, J., Brousseau, D. C., Schneider, L. C., Assa'ad, A. H., ... Sampson, H. A. (2022). Anaphylaxis knowledge gaps and future research priorities: A consensus report. The Journal of Allergy and Clinical Immunology, 149(3), 999–1009. https://doi.org/10.1016/j.jaci.2021.07.035
- 7. DuToit, G., Smith, P., Muraro, A., Fox, A. T., Roberts, G., Ring, J., & Worm, M. (2024). Identifying patients at risk of anaphylaxis. The World Allergy Organization Journal, 17(6), 100904. https://doi.org/10.1016/j.waojou.2024.100904

- 8. Ensina, L. F., Machado, M. M., Marques, J. B. M., Dos Santos, M. P. H., Lario, F. C., Araújo, C. A., Oliveira, F. A. N., & Moreira, D. de A. (2025). Artificial intelligence for detecting anaphylaxis in electronic medical records. Asia Pacific Allergy, 15(3), 153–158. https://doi.org/10.5415/apallergy.000000000000179
- Fernandez-Bravo, S., Palacio Garcia, L., Requena-Robledo, N., Yuste-Montalvo, A., Nuñez-Borque, E., & Esteban, V. (2022). Anaphylaxis: Mediators, Biomarkers, and Microenvironments. Journal of Investigational Allergology & Clinical Immunology, 32(6), 419–439. https://doi.org/10.18176/jiaci.0854
- 10. Fineman, S. M., Bowman, S. H., Campbell, R. L., Dowling, P., O'Rourke, D., Russell, W. S., Sublett, J. W., & Wallace, D. (2015). Addressing barriers to emergency anaphylaxis care: From emergency medical services to emergency department to outpatient follow-up. Annals of Allergy, Asthma & Immunology, 115(4), 301–305. https://doi.org/10.1016/j.anai.2015.07.008
- 11. Gudichsen, J. H., Bækdal, E. A., Jessen, F. B., Lassen, A. T., Bindslev-Jensen, C., Mortz, C. G., & Mikkelsen, S. (2024). Anaphylaxis: First clinical presentation, subsequent referral practise, and suspected elicitor—an observational study. Internal and Emergency Medicine, 19(7), 2047–2056. https://doi.org/10.1007/s11739-024-03589-5
- 12. Hansen, M., White, L., Whitmore, G., Lin, A., & Walker, R. (2020). Vital sign monitoring during out-of-hospital pediatric advanced airway management. Journal of the American College of Emergency Physicians Open, 1(6), 1571–1577. https://doi.org/10.1002/emp2.12273
- 13. Jacobsen, R. C., Toy, S., Bonham, A. J., Salomone, J. A., Ruthstrom, J., & Gratton, M. (2012). Anaphylaxis knowledge among paramedics: Results of a national survey. Prehospital Emergency Care, 16(4), 527–534. https://doi.org/10.3109/10903127.2012.689931
- 14. Kowark, A., Felzen, M., Ziemann, S., Wied, S., Czaplik, M., Beckers, S. K., Brokmann, J. C., Hilgers, R.-D., & Rossaint, R. (2023). Telemedical support for prehospital emergency medical service in severe emergencies: An open-label randomised non-inferiority clinical trial. Critical Care, 27, 256. https://doi.org/10.1186/s13054-023-04545-z
- 15. Li, L., Huang, N., Li, W., Yang, Y., Ma, D., Chen, H., & Zhu, R. (2024). Incidence and trends of anaphylaxis among inpatients from 2003 to 2023 in Wuhan, China: A multicenter retrospective study. World Allergy Organization Journal, 17(11), 100980. https://doi.org/10.1016/j.waojou.2024.100980
- 16. Ma, L. (Larry), Danoff, T. M., & Borish, L. (2014). Case Fatality and Population Mortality Associated with Anaphylaxis in the United States. The Journal of Allergy and Clinical Immunology, 133(4), 1075–1083. https://doi.org/10.1016/j.jaci.2013.10.029
- 17. McLendon, K., & Sternard, B. T. (2023). Anaphylaxis. In StatPearls [Internet]. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK482124/
- 18. Meyran, D., Cassan, P., Nemeth, M., Singletary, E., Raitt, J., Djarv, T., & Carlson, J. N. (2023). The Ability of First Aid Providers to Recognize Anaphylaxis: A Scoping Review. Cureus. https://doi.org/10.7759/cureus.41547
- Müller, F., Schröder, D., & Noack, E. M. (2023). Overcoming Language Barriers in Paramedic Care With an App Designed to Improve Communication With Foreign-Language Patients: Nonrandomized Controlled Pilot Study. JMIR Formative Research, 7, e43255. https://doi.org/10.2196/43255
- 20. Muraro, A., & Mendoza Hernandez, D. A. (2020). Managing food allergy and anaphylaxis: A new model for an integrated approach. Allergology International, 69(1), 19–27. https://doi.org/10.1016/j.alit.2019.10.004
- 21. Nepal, N., Thomas, V., Guerra, C. M., & Harnly, A. (2025). A case report of atypical anaphylaxis in an immunosuppressed myasthenic patient. The American Journal of Emergency Medicine. https://doi.org/10.1016/j.ajem.2025.10.010
- 22. Nuñez-Borque, E., Fernandez-Bravo, S., Yuste-Montalvo, A., & Esteban, V. (2022). Pathophysiological, Cellular, and Molecular Events of the Vascular System in Anaphylaxis. Frontiers in Immunology, 13, 836222. https://doi.org/10.3389/fimmu.2022.836222

- 23. O'Neill, R., Adeli, C., & San Miguel, C. E. (2024). An Appy That Needs Epi: An Atypical Presentation of Anaphylaxis. Journal of Education & Teaching in Emergency Medicine, 9(1), S1–S41. https://doi.org/10.21980/J80H14
- 24. Oya, S., Nakamori, T., & Kinoshita, H. (2014). Incidence and characteristics of biphasic and protracted anaphylaxis: Evaluation of 114 inpatients. Acute Medicine & Surgery, 1(4), 228–233. https://doi.org/10.1002/ams2.48
- 25. Pałgan, K. (2023). Mast Cells and Basophils in IgE-Independent Anaphylaxis. International Journal of Molecular Sciences, 24(16), 12802. https://doi.org/10.3390/ijms241612802
- 26. Pflipsen, M. C., & Vega Colon, K. M. (2020). Anaphylaxis: Recognition and Management. American Family Physician, 102(6), 355–362.
- 27. Ponce Guevara, L. V., Laffond Yges, E., Gracia Bara, M. T., Moreno Rodilla, E., Muñoz Bellido, F. J., Lázaro Sastre, M., Macías Iglesias, E. M., de Arriba Méndez, S., Campanón Toro, M. V., & Dávila Gónzalez, I. (2018). Adherence to Anaphylaxis Guidelines: Real-World Data From the Emergency Department of a Tertiary Hospital. Journal of Investigational Allergology & Clinical Immunology, 28(4), 246–252. https://doi.org/10.18176/jiaci.0243
- 28. Poziomkowska-Gęsicka, I., & Kurek, M. (2020). Clinical Manifestations and Causes of Anaphylaxis. Analysis of 382 Cases from the Anaphylaxis Registry in West Pomerania Province in Poland. International Journal of Environmental Research and Public Health, 17(8), 2787. https://doi.org/10.3390/ijerph17082787
- 29. Reber, L. L., Hernandez, J. D., & Galli, S. J. (2017). The pathophysiology of anaphylaxis. The Journal of Allergy and Clinical Immunology, 140(2), 335–348. https://doi.org/10.1016/j.jaci.2017.06.003
- 30. Tanno, L. K., Worm, M., Ebisawa, M., Ansotegui, I. J., Senna, G., Fineman, S., Geller, M., Gonzalez-Estrada, A., Campbell, D. E., Leung, A., Muraro, A., Levin, M., Ortega Martell, J. A., Caminati, M., Kolkhir, P., Le Pham, D., Darlenski, R., Esteban-Gorgojo, I., Rial, M., ... Cardona, V. (2023). Global disparities in availability of epinephrine auto-injectors. The World Allergy Organization Journal, 16(10), 100821. https://doi.org/10.1016/j.waojou.2023.100821
- 31. Tiyyagura, G. K., Arnold, L., Cone, D. C., & Langhan, M. (2014). Pediatric Anaphylaxis Management in the Prehospital Setting. Prehospital Emergency Care: Official Journal of the National Association of EMS Physicians and the National Association of State EMS Directors, 18(1), 10.3109/10903127.2013.825352. https://doi.org/10.3109/10903127.2013.825352
- 32. Triggiani, M., Patella, V., Staiano, R. I., Granata, F., & Marone, G. (2008). Allergy and the cardiovascular system. Clinical and Experimental Immunology, 153(Suppl 1), 7–11. https://doi.org/10.1111/j.1365-2249.2008.03714.x
- 33. Turner, P. J., Campbell, D. E., Motosue, M. S., & Campbell, R. L. (2020). Global Trends in Anaphylaxis Epidemiology and Clinical Implications. The Journal of Allergy and Clinical Immunology. in Practice, 8(4), 1169–1176. https://doi.org/10.1016/j.jaip.2019.11.027
- 34. Whyte, A. F., Soar, J., Dodd, A., Hughes, A., Sargant, N., & Turner, P. J. (2022). Emergency treatment of anaphylaxis: Concise clinical guidance. Clinical Medicine, 22(4), 332–339. https://doi.org/10.7861/clinmed.2022-0073
- 35. Worm, M., Pazur, K., Morakabati, P., & Redhu, D. (2025). IgE and non-IgE-mediated pathways in anaphylaxis. Seminars in Immunopathology, 47(1), 34. https://doi.org/10.1007/s00281-025-01056-7